
PDF last generated: Dec 10, 2024

Priority SDK Page 1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Welcome to Priority’s SDK.

This SDK provides a reference for how to use Priority’s internal development tools.

Before you begin, it is essential to be completely familiar with the user interface (see the
Priority User Interface Guide, available from within Priority). It is also important to be well
versed in basic SQL concepts and commands.

This SDK is a living document that is updated as time goes on. Features that were
introduced in a specific Priority version are tagged with the version number. Features that are
not tagged are available at least from version 21.1.

Please note that the SDK is technical in nature and does not go into licensing requirements
that may be necessary for working with some features. The customer / partner is responsible
for ensuring they have the necessary licensing to work with these features.

PDF last generated: Dec 10, 2024

Priority SDK Page 2

Release Notes and Change Log

SDK 24.1

Decmeber 2024

• Moved external variables (mistakenly shown with WINRUN) to WINACTIV/
ACTIVATE/ACTIVATF.

• Added example of how to use external variables when running a procedure, and
restrucutred the page for better readibility.

SDK 24.0

September 2024

• Reorganized form columns with functionality dependent on keywords in the column
name under Keyword Columns. Added the keywords for URL and email columns.

• Clarified requirements for Priority Talk integration (bell icon).
• Further expanded on working with files in Priority Cloud.
• To further support work in the cloud, replaced hardcoded file paths to system folders

(e.g. ‘../../system/load) in code examples to using SYSPATH for creating these paths
(e.g. SYPATH('LOAD', 1)).

July 2024

• Added documentation for undocumented ‘-i’ option for interfaces, which lets you run
an interface directly on a file. Also added additional examples of interfaces.

June 2024

• Documentation: Split file-based interfaces between plain text and XML/JSON files.
• Additional information added on how XML tags are structured and used.
• Added information on how to record revisions codes that are not added

automatically - TAKEWORDTMPL and TAKEHELP.

SDK 23.1

April 2024

• Added an undocumented mathmatical function POW(m, n) to Scalar Expressions.
Use it to calculate exponents with REAL numbers.

• Added an explanation of current limitations when exporting with JSON interfaces.
• Added a warning that cursors cannot be used in combined (e.g. POST-UPD-INS)

form triggers.
• Clarified that EXL2TXT only works on the first sheet in an Excel file.

Release Notes and Change Log PDF last generated: Dec 10, 2024

Priority SDK Page 3

December 2023

• New subsection in Form Columns: Adding columns to a reconciliation (split) form.

October 2023

• New option to upload and download files from an external SFTP using WSCLIENT
• New option to upload and download files from an external SFTP with the new

SFTPCLNT
• New section on installing the new Priority VSCode extension.
• Documented options for running FILELIST against the STACK_ERR table, as well

as on changes to how it works on the public cloud (AWS).
• Added a sub-page to release notes listing all entities removed from the system as

part of a version upgrade. You can find it here

SDK 23.0

July 2023

• Documented a new option for DTOA parsing - ‘WW’ for outputting the week in the
current year.

June 2023

• Moved Filters to a separate section and organized them. Added documention of two
additional filters - ‘-replacef’ and ‘-replacestrbase64’.

May 2023

• Moved the Priority Web section to a stand-alone page. Added a short guide on how
a programmer can access files they created via code in cases where the server
machine is inaccessible.

April 2023

• New options when using form interfaces to export data to XML files. The
documentation of form interfaces has undergone a significant rewrite as part of this.

• Documents now support using NFILE in the input.
• Referenced the new DEBUGRESTRICTED system constant in Debug Tools
• New page on development considerations when developing for Priority Cloud

SDK 22.1

March 2023

• Added more information on the behavior of the CHANGECOUNT variable.
• Added info on showing zero values in reports in cases where the entire column has

null values.
• Clarified that the Skip Lines field in the report generator is only relevant for splitting

Release Notes and Change Log PDF last generated: Dec 10, 2024

Priority SDK Page 4

groups into pages when used in a simple report (-1 value only). It can be used for
more exact line spacing in Documents.

February 2023

• Added information on server buffering of log writes to the documentation of the
JOURNAL program.

November 2022

• Reverted form limitation for number of participating tables back to 80.
• ODBC is now available. Added some more information regarding requirements

surrounding the use of the module.

October 2022

• Removed the sections on Oracle and SQL ODBC. Read about the new and
improved ODBC here.

• Added more information on working with XML/JSON interface files in the web
interface.

• Several new options added to the OAuth2 Defintions form.
• Added a new Setting Up page with information on initial setup of a new development

environment. It also contains information on the new option for working as a
developer without being assigned to the tabula user group.

• Added documentation of the INSTAG function for inserting data into an XML file.
• Added more examples for WINHTML for outputting a single document.

SDK 22.0

September 2022

• Documented the following SQL Functions - SQL.CLOUDURL, SQL.REGNAME,
SQL.HOSTING, SQL.ORACLE

• Clarification that the unbase64 filter expects unicode input.
• Added the size limit of tags read by XMLPARSE.

August 2022

• User identifcation via Priority Lite is now deprecated and was removed from the
SDK.

May 2022

• Clarified that decimal seperator used in JSON files must be a decimal point.
• Added a note that the WINHTML option -format is only available when printing a

single document with -v.

Release Notes and Change Log PDF last generated: Dec 10, 2024

Priority SDK Page 5

April 2022

• Added NEWATTACH - a function that returns a valid name for a new folder.
• Added support for encoding unicode text files as QR Codes.

SDK 21.1

Feb 2022

• Added base64 encode and decode filters
• Added delnl filter
• Some clarifications on the encoding of the infile used with WSCLIENT

Jan 2022

• Published the SDK in the Developer Portal!
• Added site search (powered by Algolia).
• Major rewrite on outputting documents, focusing on how to use the WINHTML

program and its various parameters.
• Moved some topics from the Advanced Programming Tools into more fitting

sections.
• Minor tweaks and corrections.

Release Notes and Change Log PDF last generated: Dec 10, 2024

Priority SDK Page 6

Removed Entities
This page documents entities that were removed from the system, by version. It lists the
following:

• Entities removed from the system - entities that are no longer in use. They may be
replaced by new entities.

• Entities removed from the menu - entities that are no longer in use, or were
reorganized into different menus

• Sub-level forms that were removed - removed or replaced with a new sub-level.
• Actions removed from a form - removed or replaced with a new action.

23.1

Entities Removed from the System

Entity Type Title
MANUFPACKS F Manufactured Packages Details
EMAILCATEGORIES F Main Menu - App Generators

Entities Removed from Menus

Entity Type Title Menu Menu Title

INVDOC_CLIPS M
Inventory
Transaction
Clips

TRANSACTIONS
Inventory
Transactions

ACCOUNTING_WIZARDS M
Financials
Wizards

ACCOUNTING_MODULE Financials

ACCOUNTS_WIZARDS M
Chart of
Accounts
Wizards

ACCOUNTS
Chart of
Accounts

AP_WIZARDS M
Accounts
Payable
Wizards

PAYABLE
Accounts
Payable

AR_WIZARDS M
Accounts
Receivable
Wizards

RECEIVABLE
Accounts
Receivable

CASH_WIZARDS M
Cash
Management
Wizards

CASH
Cash
Management

COSTINGMNF_WIZARDS M
Costing for
Manufact.
Wizards

COSTING
Cost Analysis
for
Manufacturers

CRM_WIZARDS M CRM Wizards CRM_MODULE CRM

CURRENCIES_WIZARDS M
Exchange
Rate Wizards

CURRENCIES
Exchange
Rates

EI_PURCHASE_WIZARDS M
Purchasing
Wizards

EI_PURCHASE_MODULE Purchasing

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 7

Entity Type Title Menu Menu Title
EI_SALES_WIZARDS M Sales Wizards EI_SALES_MODULE Sales

EI_WIZARDS M Wizards EI_MAIN
E-Commerce
Main Menu

FACTORYWIZARDS M
Factory
Modelling
Wizards

DB
Factory
Modeling

FNCDEF2_WIZARDS M
Financial
Attributes
Wizards

FNCDEF2
Financial
Attributes

FNCREP_WIZARDS M
Financial
Statement
Wizards

FNCREP
Financial
Statements

FNCTRANS_WIZARDS M
Financial
Statement
Wizards

FNCPATTERNS
Journal Entry
Codes

FNCTRANS_WIZARDS M
Financial
Statement
Wizards

FNCTRANS Entry Journal

GL_WIZARDS M
General
Ledger
Wizards

BOOKKEEPING
General
Ledger

INVDOC_WIZARDS M
Inventory
Transaction
Wizards

TRANSACTIONS
Inventory
Transactions

INVENTORY_WIZARDS M
Inventory
Wizards

LOGISTICS_MODULE Inventory

INVFACTWIZARDS M
Warehouse
Inv. Trans.
Wizards

INVFACT
Warehouse
Inventory
Transactions

MANAGERREP_WIZARDS M
Executive
Report
Wizards

MANAGERREP_MODULE
Executive
Reports

OFFICE_WIZARDS M
Office
Management
Wizards

OFFICE_MODULE
Office
Management

ORDERWIZARDS M
Sales Order
Wizards

CUSTORDERS Orders

PARTSWIZARDS M Part Wizards LOGPART Parts

PAYMENTSWIZARDS M
Payment
Wizards

PAYMENTS Payments

PERSONNEL_WIZARDS M HR Wizards PERSONNEL_MODULE
Human
Resources

PORDERWIZARDS M
Purchase
Order Wizards

SUPPLIERS
Purchase
Orders

PRODUCTIONCONWIZARDS M
Production
Control
Wizards

PRODUCTIONCONTROL
Production
Control

PROJWIZARDS M
Project
Wizards

RESOURCES
Project
Management

PUBLICATIONS_WIZARDS M
Library
Wizards

PUBLICATIONS Library

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 8

Entity Type Title Menu Menu Title

PURCHASE_WIZARDS M
Purchasing
Wizards

PURCHASES_MODULE Purchasing

RECONCILE_WIZARDS M
Reconciliations
Wizards

RECONCILIATION Reconciliations

SALES_WIZARDS M Sales Wizards SALES_MODULE Sales

SERVICE_WIZARDS M
Customer
Service
Wizards

SERVICE_MODULE
Customer
Service

SUPPLYWIZARDS M
Vendor
Wizards

SUPPLY Vendors

SYSMAINTEN_WIZARDS M
System
Maintenance
Wizards

SYSMAINTEN
System
Maintenance

VATREP_WIZARDS M
Wizards on
Taxes

VATREP Taxes

CUSTOMERSWIZARD M
Customer
Wizards

CUSTOMERS Customers

CUSTPRICESWIZARD M
Customer
Prices Wizards

CUSTORDERS Orders

CUSTPRICESWIZARD M
Customer
Prices Wizards

PRICECOST
Prices and
Discounts

CUSTPRICESWIZARD M
Customer
Prices Wizards

CPROF
Price
Quotations

ECSALESLIST P EC Sales List INTRASTAT VAT Reports
INTRASTAT P Intrastat INTRASTAT VAT Reports

VATREP4 P
VAT Report -
Belgium (by
Boxes)

INTRASTAT VAT Reports

VATREP5 P
VAT Report
(by Boxes)

INTRASTAT VAT Reports

VATREPGER P
VAT Report -
Germany (by
Boxes)

INTRASTAT VAT Reports

VATSUP3 P
Value Added
Tax

INTRASTAT VAT Reports

VATREP3 P
VAT Based on
Journal Entries

INTRASTAT VAT Reports

VATCUST_POLAND P
Journal of
Customer
Invoices

INTRASTAT VAT Reports

VATSUP_POLAND P
Journal of
Vendor
Invoices

INTRASTAT VAT Reports

VATIMPFILE_POLAND P
Shipping/
Import
Vouchers

INTRASTAT VAT Reports

OPENVAT P
Sums for
Transfer to
VAT Account

INTRASTAT VAT Reports

VAT P
Transfer Sums
to VAT

INTRASTAT VAT Reports

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 9

Entity Type Title Menu Menu Title
Account

VATCUST P
Check VAT on
Income - by
Invoice

INTRASTAT VAT Reports

VATSUP P
Check VAT on
Expnse - by
Invoice

INTRASTAT VAT Reports

FNCVATREP P
VAT by
Account

INTRASTAT VAT Reports

CHECKVAT P
Check for
Correct VAT

INTRASTAT VAT Reports

CHECKVAT2 P
Check
Reconciliations
for VAT

INTRASTAT VAT Reports

CUSTVATNUM P
Check
Customer VAT
Numbers

INTRASTAT VAT Reports

VATPERIOD P
Set VAT
Report Period

INTRASTAT VAT Reports

VATSUPARG P
Value Added
Tax - Argentina

INTRASTAT VAT Reports

ECSALESFILEBELGIUM P
EC Sales List -
Belgium

INTRASTAT VAT Reports

ECSALESFILEGERMANY P
EC Sales List -
Germany

INTRASTAT VAT Reports

INTRASTATBELGIUM P
Intrastat -
Belgium

INTRASTAT VAT Reports

INTRASTATGERMANY P
Intrastat -
Germany

INTRASTAT VAT Reports

CHECKVATNUMEUALL P
Validate VAT
File No. -
EU(Cust)

INTRASTAT VAT Reports

CHECKVATNUMEUALLSUP P
Validate VAT
File No. -
EU(Vend)

INTRASTAT VAT Reports

VATREPITALY P
VAT Register -
Italy

INTRASTAT VAT Reports

VATREPITALYDOC P
VAT Register -
Italy (Printable)

INTRASTAT VAT Reports

INTRASTATITALY P Intrastat - Italy INTRASTAT VAT Reports

INTRASTATNL P
Intrastat -
Netherlands

INTRASTAT VAT Reports

INTRASTATFRANCE P
Intrastat -
France

INTRASTAT VAT Reports

INV_CUSTSALESBEXML P
Annual Sales
File - Belgium

INTRASTAT VAT Reports

DECFORARTICLE21 P
Declaration for
Article 21

INTRASTAT VAT Reports

GDPDU P
GoBD Export -
Germany

INTRASTAT VAT Reports

NLAUDIT P Audit File - INTRASTAT VAT Reports

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 10

Entity Type Title Menu Menu Title
Netherlands

ECSALEINDICATORS F
EC Sales
Indicators

INTRASTAT VAT Reports

TAXBOXES F
Tax Report
Boxes

INTRASTAT VAT Reports

INTRASTATLOG F
Intrastat
Creation Log -
Italy

INTRASTAT VAT Reports

TAXBOXDEFS_ONE F
Tax Report
Box Definitions

INTRASTAT VAT Reports

VIESLOG F
VIES VAT No.
Validation Log

INTRASTAT VAT Reports

INTRASTATFRANCELOG F
Intrastat
Creation Log -
France

INTRASTAT VAT Reports

GENINVOICESEURO F

List of
Financial
Documents-
Eur.

INTRASTAT VAT Reports

VATLOG F
VAT Report
Creation/
Transmit Log

INTRASTAT VAT Reports

INTRASTATCODES F
Intrastat
Definitions

INTRASTAT VAT Reports

ITALYTAXPAYMENTS M
Tax Payments
- Italy

INTRASTAT VAT Reports

HMRCVAT M
Online VAT
(UK)

INTRASTAT VAT Reports

Removed Subforms

Subform Subform Title Upper Form Upper Title

MANUFPACKS
Manufactured
Packages Details

ALINE Production Details

MANUFPACKS
Manufactured
Packages Details

ALINE_ONE
Reporting
Production Details

EMAILCATEGORIES
Main Menu - App
Generators

CUSTPERSONNEL Customer Contacts

EMAILCATEGORIES
Main Menu - App
Generators

SUPPERSONNEL Vendor Contacts

COMPANYWEBWARNINGS
Companyweb
Warnings

COMPANYWEB
Business Health by
Companyweb

USERBFUNDS
Pension and
Training Funds

SALARYTEMPLATES
Employment
Contracts

PHONEAPP
Permissions for
Applications

PHONEBOOK Contacts

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 11

Removed Actions

Action Type Action Title Form Form Title
LINKPRINTDELIVERY P Print All Documents DLVTRACKS Delivery Tracking Documents

23.0

Entities Removed from the System

No entities removed.

Entities Removed from Menus

Entity Type Title Menu Menu Title

PCCHARGE M
Direct Connect
Settings

TIV Receipts

ENTERPRISESEARCH P Enterprise Search SEARCHDEFS
Search
Definitions

VATDATEFNCFILPER P
Update VAT
Rep.Date in
J.Entries

FNCPROGS
Auxiliary
Programs

VATDATEFILTER P
Adjust Tax Report
Dates

FNCPROGS
Auxiliary
Programs

CUSTOMSNUMFILTER P
Update VAT File
No. in Invoice

FNCPROGS
Auxiliary
Programs

FNCTAXES_FILTER P
Update Tax
Compon. in J.
Entries

FNCPROGS
Auxiliary
Programs

ACTDATEFNCFILPER P
Update Activ.
Date in J. Entries

FNCPROGS
Auxiliary
Programs

UPDCUSTOMSREF P
Upd Customs
Manifests in
Ledger

FNCPROGS
Auxiliary
Programs

VPRICEFILTER P
Update Price w/
Tax in Docs

FNCPROGS
Auxiliary
Programs

MULTICURFILTER P
Exchange Rate
Adjustment Filter

FNCPROGS
Auxiliary
Programs

UPDATECUR3 P
Update Foreign
Curr Sums in Acct

FNCPROGS
Auxiliary
Programs

DELZEROLINES P
Delete J.Entry
Items w/Zero
Sums

FNCPROGS
Auxiliary
Programs

FIXCURREGITEMS P
Fill in Exchange
Rate Gaps

FNCPROGS
Auxiliary
Programs

OVDIMNET M
Interfacing with
Ovdimnet

PERSONNEL_MODULE
Human
Resources

WMSCONTROL F
Mobile Device
Controller

WMS2
WMS Application
Generator

PREPWMSCUBE P
Prep for Ware
Task Analysis (BI)

WMSPROCS
Auxiliary
Programs

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 12

Entity Type Title Menu Menu Title

CHANGESTATWTASKS P
Revise
Warehouse Task
Statuses

WMSPROCS
Auxiliary
Programs

UNLOCKWTASKS P
Release Locked
Tasks

WMSPROCS
Auxiliary
Programs

DELWTASKS P
Cancel
Unreported Tasks

WMSPROCS
Auxiliary
Programs

WMSPROCS M
Auxiliary
Programs

WMSMAINTEN
WMS
Maintenance

WMS2 M
WMS Application
Generator

WMSMAINTEN
WMS
Maintenance

SOFINITCONF P
Set Up Mobile
Device Constants

WMSDEF
WMS Mobile
Device
Maintenance

LOADUSATAXES M Load Taxes (US) FNCDEF Basic Data
VATCOMPTYPES F VAT Report Type ENVIRONMENT Companies

Removed Subforms

Subform Subform Title Upper Form Upper Title
FNCTAXES Tax Calculation Details TAXTOTALBELGIUM Total Tax

Removed Actions

Action Type Action Title Form Form Title

DIRECTCONNECT P
Send to Direct
Connect

EPAYMENT2
Other Forms of
Payment

DIRECTCONNECT P
Send to Direct
Connect

TPAYMENT2
Other Forms of
Payment

DIRECTCONNECT2 P
Get Token from Direct
Connect

PAYMENTDEF
Account/Credit Card
to Charge

DIRECTCONNECT2 P
Get Token from Direct
Connect

PAYMENTDEF_ONE
Account/Credit Card
to Charge

DIRECTCONNECT2 P
Get Token from Direct
Connect

PAYMENTDEF_TWO
Credit Card to
Charge

SOFINITCONF P
Set Up Mobile Device
Constants

WMSDEF
WMS System
Definitions

SESTATUSCHECK P
ShipEngine Track
Shipment Online

DOCUMENTS_D
Customer
Shipments

22.1

Entities Removed from the System

Entity Type Title
PORDUSERCODES F Approval Lists for Purch Order
PDUSERCODES F Approval Lists for PRs
PDUSERCODELIST F Approvers

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 13

Entity Type Title
PDEALULIST F Blanket Purchase Ord Approvers
ECOUSERLIST F ECO Approvers
ECOUSERCODES F ECO Approval Lists
PORDERUSERLIST F Order Approvers
PDEALUSERCODES F Blnkt Purch Ords Approval Lists
PYINVUSERCODES F Purch. Invoice Approval Lists
PYINVUSERLIST F Purchase Invoice Approvers
PORDI_CHANGE_LOG F Purchase Order Item Changes-OLD
CPROFUSERCODES F Approval Lists for Price Quotes
CPROFUSERLIST F Price Quotations Approvers
ECOUSERCODES F ECO Approval Lists
ECOUSERLIST F ECO Approvers
ORDERUSERCODES F Approval Lists - Sales Orders
ORDERUSERLIST F Sales Order Approvers
PDEALULIST F Blanket Purchase Ord Approvers
PDEALUSERCODES F Blnkt Purch Ords Approval Lists
PDUSERCODELIST F Approvers
PDUSERCODES F Approval Lists for PRs
PORDERUSERLIST F Order Approvers
PORDUSERCODES F Approval Lists for Purch Order
PYINVUSERCODES F Purch. Invoice Approval Lists
PYINVUSERLIST F Purchase Invoice Approvers
ECO_2_3 R ECO Approvers
ECO_2_3 D ECO Approvers

Entities Removed from Menus

Entity Name Type Title Menu Name Menu Title

CUSTAGENT R
Customers and
Their Sales Reps

CUSTREPORTS Customer Reports

CLIPCUSTOMERS P
Open Customer
Clip

CUSTOMERS Customers

CLIPDOCUMENTS_D P
Record Customer
Shipment Clip

INVSALES
Sales Inventory
Transactions

CLIPDOCUMENTS_D P
Record Customer
Shipment Clip

INVDOC_CLIPS
Inventory
Transaction Clips

CLIPDOCUMENTS_H P
Warehouse
Assembly Clip

INVDOC_CLIPS
Inventory
Transaction Clips

CLIPDOCUMENTS_H P
Warehouse
Assembly Clip

WAREASSM
Warehouse
Assemblies

CLIPDOCUMENTS_P P Record GRV Clip INVDOC_CLIPS
Inventory
Transaction Clips

CLIPDOCUMENTS_P P Record GRV Clip INVPURCHASES
Purchase Inventory
Transactions

CLIPDOC_C P
Inventory Count
Clip

INVCOUNT Inventory Count

CLIPINVOICES_H P
Check Payment
Clip

PRINTCHECKS Check Printing

CLIPINVOICES_Q P Bank Transfers QIV Bank Transfers

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 14

Entity Name Type Title Menu Name Menu Title
Clip

CLIPMASAV P
Payment by ITP
Clip

QIV Bank Transfers

CLIPMASAV P
Payment by ITP
Clip

MSVINTERFACE
Payment Interface
Payables

CLIPORDERS P
Record Sales
Order Clip

CUSTORDERS Sales Orders

CLIPPART P Open Part Clip PART Parts
CLIPPART P Open Part Clip LOGPART Part Catalogue

CLIPPORDERS P
Record Purchase
Order Clip

SUPPLIERS Purchase Orders

CLIPPRICECOST P
Prices and
Discounts Clip

PRICECOST
Prices and
Discounts

CLIPPRICECOST P
Prices and
Discounts Clip

CUSTOMERS Customers

CLIPPRIVTREE P
Users and
Privileges Clip

USERS Users

CLIPPRIVTREE P
Users and
Privileges Clip

PRIVILEGES Privileges

CLIPSUPPLIERS P Open Vendor Clip SUPPLY Vendors

CLIPVAT P VAT Clip VAT
Value Added Tax
(Israel)

CLIPENDOFYEAR P Year-End Clip FNCBAL Fiscal Periods

CLIPINVOICES_H P
Check Payment
Clip

HIV Payments by Check

PROFILEOUT P
Export System
Profile

PROGDESIGNTOOLS Design Programs

PROFILEIN P
Import System
Profile

PROGDESIGNTOOLS Design Programs

PYINVUSERCODES F
Purch. Invoice
Approval Lists

PINVOICES Purchase Invoices

ECOUSERCODES F
ECO Approval
Lists

ECO
Engineering
Change Orders
(ECO)

CPROFUSERCODES F
Approval Lists for
Price Quotes

CPROFSETTING
Defs & Aux
Programs-Price
Quotes

PORDUSERCODES F
Approval Lists for
Purch Order

PORDERTABLES
Purchase Order
Maintenance

ORDERUSERCODES F
Approval Lists -
Sales Orders

ORDSTATUS
Defs & Aux
Programs-Sales
Orders

PDEALUSERCODES F
Blnkt Purch Ords
Approval Lists

PORDERTABLES
Purchase Order
Maintenance

PDUSERCODES F
Approval Lists for
PRs

PURDEMANDS Purchase Demands

LOCATEAUTHORIZER P
Locate Approver
in Open Docs

REPLACEUSER User Replacement

ECOUSERLISTDATE F
ECO Approval
History

ECO
Engineering
Change Orders
(ECO)

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 15

Entity Name Type Title Menu Name Menu Title

CUSTTEMPLATES M
Employment
Contracts for
Cust.

SALARY
Time and
Attendance

MRPDEMAND R
Analysis of MRP
Results (ATP)

MRPREPORTS MRP Reports

WWWSHOWDOC_h P Print Rental RENTALS Rentals

RENTAVAIL P
Rental Item
Availability

RENTALS Rentals

RENTALPAYREP P
Upcoming
Payments for
Rentals

RENTALS Rentals

FINASTRASTART P
Set Up Finastra
Banking

DIGITALBANKS Digital Banking

COMPCERTFINASTRA F
Finastra Digital
Banking Defs.

DIGITALBANKS Digital Banking

Removed Subforms

Subform Subform Title Upper Form Upper Title

PORDI_CHANGE_LOG
Purchase Order Item
Changes-OLD

PORDERITEMS Order Items

PORDI_CHANGE_LOG
Purchase Order Item
Changes-OLD

PORDERITEMS_CHANGES Order Items

CUSTCHECKLIST
Checklist for New
Customer

CTYPE
Customer
Groups

SUPCHECKLIST Checklist for Vendors SUPTYPES
Vendor
Groups

PARTCHECKLIST Checklist for Parts FAMILY_LOG
Part
Families

Removed Actions

No actions removed.

22.0

Entities Removed from the System

Entity Type Title
ECOUSERCODES F ECO Approval Lists
SERNFILE F History of Components
SERNUMBERSTRANS F Audit Trail for Item
SONSERN F Serialized Components of Part
SERNUMHISTORY F Service Calls for Serial Number

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 16

Entities Removed from Menus

Entity Name Type Title Menu Name Menu Title

ECOUSERLIST F
ECO
Authorizers

ECO
Engineering
Change Orders
(ECO)

RRFVABYHEADERFILTER P
Update FVA
Components for
Doc.

REVRECDATA
Revenue
Recognition

RRFVABYHEADERFILTER P
Update FVA
Components for
Doc.

FNCPROGS
Auxiliary
Programs

SHIPMANIFESTS P Create Manifest INVSALES
Sales Inventory
Transactions

CUSTTEMPLATES M
Employment
Contracts for
Cust.

SALARY
Time and
Attendance

SAVETITLES P
Save for Transl-
Before Upgrade

LANGOTHER Miscellaneous

DELTITLECHGS P
Delete Changes
After Revision

LANGOTHER Miscellaneous

SDIGETPENDING P
Get Pending
SDI Invoices

ELECTRONICINVOICES
Electronic
Invoices

Subforms Removed

Subform Type Subform Title Upper Form Upper Title

SONSERN F
Serialized
Components of
Part

SERNUMBERS
Catalogue of Parts w/
Serial Nos.

SERNUMHISTORY F
Service Calls for
Serial Number

SERNUMBERS
Catalogue of Parts w/
Serial Nos.

SERNFILE F
History of
Components

SERNUMBERS
Catalogue of Parts w/
Serial Nos.

SERNUMBERSTRANS F Audit Trail for Item RENTITEMS Rental Items
SERNUMBERSTRANS F Audit Trail for Item RENTSERNTRANS Serial Numbers

SERNUMBERSTRANS F Audit Trail for Item SERNRENTS
List of Equipment for
Rent

SERNUMBERSTRANS F Audit Trail for Item SERNUMBERS
Catalogue of Parts w/
Serial Nos.

CHANGE_LOG F History of Changes PART Parts

CHANGE_LOG F History of Changes PRDPART
Purchase/MRP
Parameters for Part

CHANGE_LOG F History of Changes FNCPART
Financial Parameters
for Parts

CHANGE_LOG F History of Changes LOGPART Part Catalogue

Removed Actions

No actions removed.

Removed Entities PDF last generated: Dec 10, 2024

Priority SDK Page 17

Customization Rules and Best
Practices

General Rules

Development Process

In order to properly handle your customizations, you should have a total of three Priority
installations:

• a development environment one in which you develop your customization.
• a test environment in which you or the customer run tests.
• the production server for which the customization is developed.

After creating your customizations in the development installation, create an upgrade file and
install it in the test installation. Only once you are satisfied with results should you install it on
the production server.

Warning! You should never customize directly on the production server.

As revisions are maintained per user, it is imperative for all programmers to work in their own
usernames while performing the programming.

Note: In order to execute a DBI operation – i.e., anything that affects a table, table column or
key – you must belong to the privilege group of the superuser (tabula) and the PRIVUSERS
system constant must be set to 1.

For more information on creating the revision and installing it on the test/production server,
see Installing your Customizations.

Names

The following rules apply to the internal names of all private entities added to the system:

• They are restricted to 20 characters in length.
• They may only contain alphanumeric values and the underline sign (no spaces).
• They must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form — System Management → Dictionaries).
• New custom entities (tables, forms, procdeures, reports, triggers, functions) must

begin with a four-letter prefix (e.g., XXXX_CUSTOMERS). All entities created for the
same customer should share the same prefix.

• Sub-entities of standard entities (e.g., new column in standard form or report) should
likewise begin with a four-letter prefix.

• Any variable that you add to your code should start with the same four-letter prefix.
If it does not, you run the risk of duplicating a system variable, which will have an
adverse effect. It is not sufficient to check that such a variable does not already exist
in the trigger, as it may be added in future software revisions.

Customization Rules and Best Practices PDF last generated: Dec 10, 2024

Priority SDK Page 18

Code

• Never INSERT or UPDATE data in standard tables directly. Use interfaces or other
tools that interact with the form to insert data in standard forms.

• Any LINK or UNLINK operation should be followed by a test to ensure the operation
succeeded. Remember, a failed LINK operation could lead to overwriting data in the
original table rather than the linked copy!

• Do not write non-ASCII characters directly in your code. If you need to reference
text that is unicode (e.g. a message in Hebrew), use the ENTMESSAGE function to
insert it into a variable, instead.

Tables

• When modifying tables, do not change standard table columns or any of the table’s
Unique (or Auto Unique) keys.

• You can increase the width of certain columns. We recommend you consult with
Priority Software beforehand.

• You can add nonunique table keys to a standard table. We recommend you consult
with a DBA beforehand.

Rules for Columns

• Decimal precision can only be specified for a REAL or INT column. Most columns
have a decimal precision of 2. To designate a REAL number with indefinite
precision, use decimal precision 0; otherwise, the number will be rounded up to a
defined precision by INSERT and UPDATE statements. In the case of a shifted
integer, decimal precision must be equal to the value of the DECIMAL system
constant (or it may be 0, i.e., a regular integer).

• Modification of a column affects all forms and reports in which the column appears.
• You cannot delete a column that appears in a form, report or procedure.
• You can only change the following column types: INT to REAL and vice versa

(number conversion), and only during the development phase.
• Text columns (i.e., CHAR columns) should not exceed a width of 120 characters.
• Columns that are part of the SELECT statement of a SEARCH type trigger cannot

exceed 59 characters.
• You cannot add columns to system tables.

Rules for Keys

• There may only be one autounique key per table. It must comprise a single column
of INT type which does not appear in any other of the table’s keys, and it must be of
first priority.

• A table must have at least one unique key.
• If there is an autounique key, it must be the first key (1) in the table and a unique

key must be second. If there is no autounique key, one of the unique keys must
have first priority.

• The order in which key columns are designated determines their priorities.
• The column to be included in the key must be included in the table to which the key

is assigned.
• If you add a column to a key without specifying column priority, it will automatically

be assigned the last available priority (e.g., if the key includes two columns, the
added column will receive a priority of 3).

Customization Rules and Best Practices PDF last generated: Dec 10, 2024

Priority SDK Page 19

• Changing a key column’s priority will affect the priority of the other columns in the
key.

Forms

• Never use a standard base table to create your own form. Create your own table
instead.

• You cannot delete a standard column from a standard form.
• When creating your own multiple joins, use a join ID and column ID greater than 5.

• Any trigger you add must start with a four-letter prefix or end with a four-letter suffix.
Choose the first letter in the prefix/suffix for sorting purposes; the rest of the prefix/
suffix should be the one normally used for this customer.

Important note: SEARCH-FIELD triggers are the one exception to this rule, as their
name cannot be changed. Instead, you have to use the standard trigger. This
creates the slight risk that your trigger will be overwritten by a standard SEARCH-
FIELD trigger that is changed in future software revisions.

• Any form message that you add must be assigned a number greater than 500.
Note: Certain forms, such as those of constants, have standard messages with
numbers larger than 500.

• Do not add standard forms as sub-level forms of other forms (standard or custom).
• When using LABELs in your code, use numbers with at least 4 digits. This will

prevent conflicts with the label numbers used in standard triggers.

Reports

If you revise a standard report, you must follow some rules to ensure that your
customizations are not overwritten by future Priority releases:

• Any columns that you add to a standard report must have an internal number (Col.
Number) greater than 500. After assigning the column number, you will probably
need to fix the position of the column.

• If you add a join to a new table in a standard report, assign a Join ID greater than 5.
• Do not change the sorting or grouping of standard reports. If you have to do so,

copy the standard report and create one of your own.
• You cannot delete a standard column from a standard report.
• When creating your own multiple joins, use a join ID and column ID greater than 5.
• Whenever you revise a standard report or write a new one, it is imperative to check

the report's optimization. To do so, run the SQL Development (WINDBI) program
(System Management → Generators → Procedures). From the Optimization menu,
select Report Optimization and record the internal name of the relevant report.

• Conditions and expressions cannot exceed a maximum length of 3000 characters.

Procedures

• You cannot revise a standard procedure. Instead, you must copy it and make
revisions to the copy. If the procedure runs one or more reports, you may need to
copy the reports as well (depending on the type of revisions desired; see Reports).

• When creating a copy of a standard procedure that runs a program, do not change
any of the parameters that are transferred to the program.

Customization Rules and Best Practices PDF last generated: Dec 10, 2024

Priority SDK Page 20

• All procedures that include a form interface should include the form interface as a
step, after an END step. This is utilized by the system for assigning permissions
when running the interface.

• You should avoid using a standard interface as part of a custom procedure, or your
code may break in the future due to a change to the interface definitions.

Best Practices

For all intents and purposes, Priority’s SQL is a development language in its own right, and
general best practices for writing code should be kept in mind.

• Write reusable code. If you plan on using the same code multiple times, turn it into a
function or buffer.

• Write readable code. Use meaningful variable names and include comments.

Recommendations

The following recommendations are intended for new developers to avoid some common
pitfalls.

• Do not add multiple PRE/POST triggers for the same form or form column. If you
need to add additional logic, add it as a buffer and include it in the existing PRE/
POST trigger.

• When adding/modifying functionality, include a comment that points towards the
specification document or requirement that led to this addition/change.

• Do not insert error and warning messages within the code being iterated over by a
loop or a cursor. These will cause the process to hang while waiting for input from
the user. If you need to display a message, escape the loop or wait for it to end, and
then display the error/warning.

Customization Rules and Best Practices PDF last generated: Dec 10, 2024

Priority SDK Page 21

Setting Up the Dev Environment
Before you start building new Priority entities, you should ensure your user has the
necessary permissions in the development server. Furthermore, if this is a new dev
environment, you might need to expose the table generator and add the development utilities
folder.

User Permissions

For the majority of use cases, developer users should be assigned to the tabula superuser
group.

Note: These instructions need to be performed as the tabula user. If you do not have access
to the tabula user, request that the system administrator perform them.

1. Open the Users form (Path: System Management > System Maintenance >
Users > Users) and retrieve your user.

2. Assign tabula as the privilege group leader for your user.
3. Open the System Constants form.
4. Ensure the value of the PRIVUSERS constant is set to 1.

If you do not wish to assign superuser permissions to developers, see below for more
information on the privileges required by developers.

Expose the Table Generator

On a fresh installation of Priority, the Table Generator is not linked to the menu. If you need
to add/modify tables and columns, you will have to link it to the Generators menu. If you do
not see the Table Generator menu in the Generators menu:

1. Open the Menu Generator form (Path: System Management > Generators >
Menus > Menu Generator).

2. Retrieve the Generators menu.
3. In the Menu Items sub-level, add the TABGEN menu.

Setting Up the Dev Environment PDF last generated: Dec 10, 2024

Priority SDK Page 22

Result: The table generator menu is now available in the Generators menu.

Developing for Multiple Languages

If users at a customer site work in a language other than English, you will need to install
revisions in more than one language. Before you even begin programming for such a
customer, enter the System Constants form (System Management → System Maintenance
→ Constant Forms) and change the value of the UPGTITLES constant to 0.

Consequently, no titles (in any language) will be stored in the upgrade file; rather, they will be
inserted into a second file (based on the upgrade file) using the INSTITLES program.

Note: For more on preparing upgrades for other languages, see Customizations: Installing
the Language Dictionaries.

Setting Up the Dev Environment PDF last generated: Dec 10, 2024

Priority SDK Page 23

Recommended: Add the Util Folder

Windows Only

The Util folder is an add-on folder that contains utilities that enhance the functionality of the
SQL Development (WINDBI) environment. Specifically, it allows the use of the tools in the
Queries and Dump menus.

The folder needs to be placed in the priority/system folder on the server.

1. On the Priority server, navigate to the priority/system folder.
2. Download the zipped util folder from here.
3. Extract the contents of the archive to the util folder. If there is no such folder, create

it; if such a folder already exists, back up it contents first, then replace the files
inside.

Development Permissions for non-tabula User
Group

22.1

The following instructions are for system administrators of development environments.

If you do not wish to assign developers to the tabula user group, you should create a new
user group for developers, with the following privileges and permissions:

• In the privilege explorer, ensure they have full access to the following menus under
System Management:

◦ Generators
◦ Revisions
◦ Database Interfaces
◦ Dictionaries (optional, useful if you are working with more than one

language)
• In the User Permissions form (Path: System Management > System

Maintenance > Users > User Permissions), check the following boxes for each
user in the user group:

◦ Authorized for SQL
◦ Customize Workspace
◦ Table Structure Mgmt

Setting Up the Dev Environment PDF last generated: Dec 10, 2024

Priority SDK Page 24

Tables

Table Names

The following rules apply to table names:

• They are restricted to 20 characters.
• They may only contain alphanumeric values and the underline sign (no spaces).
• They must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form — System Management → Dictionaries).
• The name of any new table (one you have added yourself) must begin with a four-

letter prefix (e.g., XXXX_CUSTOMERS). All tables (and any other Priority entities)
that you have created for the same customer should share the same prefix.

Table Type

The table type determines whether the table is an application table or a system table. An
application table is a table in which data is maintained separately for each Priority company,
whereas a system table is used to store data that is common to all companies in the current
Priority installation.

For historical reasons,Priority lists 4 possible values in the TYPE column:

• 0/1 – for application tables
• 2/3 – for system tables

However, new tables should always be assigned type 0.

Note: You cannot create new system tables or add new columns to system tables.

Rules for Modifying Tables and Table Columns

1. When modifying tables, do not change standard table columns or any of the table’s
unique (or Auto Unique) keys.

◦ You can add nonunique table keys to a standard table. We recommend you
consult with a DBA beforehand.

2. If you add a column to the table, the column name must begin with a four-letter
prefix. Use the same prefix for all table columns (as well as any other Priority
entities) that you have added for a given customer.

3. When creating a new table, the table name should begin with the appropriate four-
letter prefix (there is no need to add this prefix to the new table’s columns).

When Installing a Revision with Modifications of a Standard Table

• Ensure that all users have exited the system.

Note: For general guidelines for development, see Working with Version Revisions.

Tables PDF last generated: Dec 10, 2024

Priority SDK Page 25

Table Columns

Column Names and Titles

The column name is unique to its table, and is used in SQL statements. The column title is
also unique to its table; it is updatable and is utilized in the user interface (forms, reports,
programs, ODBC). Every column must be assigned both a name and a title. For instance,
the column which stores an order number has the name ORDNAME and the title Order
Number. A title may be easily changed (even translated into another language) as often as
necessary. In contrast, a change in column name will require appropriate changes in SQL
statements that refer to the column (e.g., in form triggers, compiled programs). As the
column name is used in SQL statements, it is subject to the same restrictions as table names
(see Rules for Columns).

Column Types

The following table lists all available column types:

Col. Type Description Width Form Col. Type

CHAR string of characters >1 String→

single character =1 Character

REAL real number any Real

INT signed integer any Integer

DATE date (mm/dd/yy or dd/mm/yy) 8 Date

date (mm/dd/yyyy or dd/mm/yyyy) 10 Date

date & time (24-hour clock) 14 Date+Time

TIME time (24-hour clock) 5 hh:mm

span (number of hours and minutes) 6 hhh:mm

DAY day of the week 3 Day

Note: It is important to distinguish between integers (columns of INT type, e.g., QUANT,
BALANCE) and strings of digits (columns of CHAR type, e.g., ZIPCODE, ORDNAME,
PHONE).

With one exception (see below), you cannot change the type of an existing column. Instead,
you need to take the following steps:

1. Add a new column of the correct type.

Table Columns PDF last generated: Dec 10, 2024

Priority SDK Page 26

2. Write a short command to filter data from the existing column into the new one.
3. Delete the old column.

Exception to the above rule: During the development phase, you can convert INT columns to
REAL and vice versa, using the Change Number Type program (see Options for Creating
and Modifying Tables, Columns and Keys). However, once a custom development has
been installed in your working environment, this operation may fail, in which case you should
use the above method instead.

Decimal Precision

Decimal precision (the number of places to display to the right of the decimal point) is
optional; it is used in real numbers and shifted integers. A shifted integer is stored in the
database as an integer but is displayed as a real number (see, for example, the TQUANT
column in the ORDERITEMS table).

Note: When working with shifted integers, use the REALQUANT function to retrieve the
actual value.

Rules for Columns

The following rules apply to table columns:

• Column names are up to 20 characters.
• Column names must be made up of alphanumeric values and the underline sign (no

spaces).
• Column names must begin with a letter.
• The column name may not be a reserved word (a list of reserved words appears in

the RESERVED form).
• When adding a new column to a standard table, you must assign the column name

a four-letter prefix (e.g., XXXX-CUSTNAME). This should be the same prefix you
use for all entities that you add to Priority for the customer in question.

• Column titles (up to 20 characters, including spaces) must be enclosed in single
quotations, e.g., 'Order Number'.

• Decimal precision can only be specified for a REAL or INT column. Most columns
have a decimal precision of 2. To designate a REAL number with indefinite
precision, use decimal precision 0; otherwise, the number will be rounded up to a
defined precision by INSERT and UPDATE statements. In the case of a shifted
integer, decimal precision must be equal to the value of the DECIMAL system
constant (or it may be 0, i.e., a regular integer).

• Modification of a column affects all forms and reports in which the column appears.
• You cannot delete a column that appears in a form, report or procedure.
• You can only change the following column types: INT to REAL and vice versa

(number conversion), and only during the development phase.
• Text columns (i.e., CHAR columns) should not exceed a width of 80 characters.

Wider columns might not be displayed well in forms, depending on the screen
resolution of the user's computer. While there are a few table columns whose width
exceeds 80 characters (e.g., the MESSAGE column in the ERRMSGS table), these
columns are generally only displayed in reports. If you need a wide text column, it is
recommended that you use a sub-level text form instead.

• You cannot add columns to system tables.

Table Columns PDF last generated: Dec 10, 2024

Priority SDK Page 27

Table Keys

Introduction

The last step in table construction is to specify the keys attached to the table, the columns
that make up each key, and the priority of each column within the key. Keys are also
assigned priorities, but this is only relevant for certain types (see Rules for Keys). The order
in which keys and key columns are designated determines their priorities.

Keys are used to provide access to records in the table. Autounique and unique keys ensure
that no two records in a given table will have identical values in the columns making up these
keys.

The Autounique Key

The autounique key is similar to the identity column in MSSQL or sequence in Oracle. It
allows you to create a column that will automatically distinguish between all records in the
table. This column automatically receives a unique integer each time a record is added.

Example: The autounique key comprised of the CUST column assigns a unique
internal number to each customer. This is distinguished from the user-assigned
customer number (CUSTNAME) that appears in the forms.

The autounique key is an effective means of joining tables in a form. For example, the
customer number appears both in the Customers form and the Orders form. Rather than
joining the CUSTOMERS and ORDERS tables through the customer number, they are joined
through the CUST column. The advantage is twofold: First, the unique value of the CUST
column, which joins the tables, always remains constant, while the customer number, which
is only stored in a single table (CUSTOMERS), may be changed at will. Thus, if at some
stage, a decision is made to add a “P” to the numbers of preferred customers, the revision
will only be made in the records of the CUSTOMERS table. The ORDERS table will not be
affected at all.

Similarly, a decision to modify the width of the CUSTNAME column would only require a
change in the CUSTOMERS table. Had the join been made through the CUSTNAME
column, then any changes would have to be made in all the appropriate records in the
ORDERS table, as well as in the CUSTOMERS table.

Of course, the situation is aggravated manifold, as customer data are imported into other
tables as well.

A parallel example concerns the one-to-many relationship between the ORDERS and the
ORDERITEMS table (the latter stores details regarding the ordered parts). It is better to join
these tables via the internal order number (the autounique key) than the user-designated
order number. In that way, the user can update the order number where needed, without
having to update each of the order items as well.

An autounique key should be included in any tables which contain basic elements. The
reference is to data which remain relatively constant and which are likely to be imported into
other tables (e.g., customers, parts, warehouses). Hence, it is included in the CUSTOMERS,

Table Keys PDF last generated: Dec 10, 2024

Priority SDK Page 28

PART and WAREHOUSES tables.

Furthermore, an autounique key should be assigned to tables whose records have a one-to-
many relationship with the records of another table.

Example: As there are several order items for each order, there is an autounique
key in the ORDERS tables.

Unique Keys

A unique key allows for rapid data retrieval via the columns that make up the key. Moreover,
it ensures that no two records in a given table will have identical values in those columns.
Every table must include at least one unique key.

Example: If a unique key includes FIRSTNAME and LASTNAME columns, then
there will only be one record in the EMPLOYEES table for John Smith, although
there can also be a record for John Doe or Jane Smith.

It should be emphasized that the modification of unique keys can be problematic if care is
not taken. There are three danger zones: adding a unique key, deleting a column from a
unique key and reducing the width of a column in the unique key. In all three cases, records
can be deleted inadvertently from the database.

Before adding a unique key, ensure that values have been specified for the columns which
comprise it; otherwise, all existing records will have the same value in the columns
comprising the unique key. As this is not permitted, all but one of the records will
automatically be erased!

A similar situation may arise from the deletion of a column from a unique key. If the deletion
causes more than one record to contain the same values in its unique key (which is now
made up of one less column), all but one of the records in question will be deleted from the
database.

Example: If the unique key contains the columns FIRSTNAME and LASTNAME,
then the record for Samuel Brown is distinguished from the record for Samuel
Black. If you delete the LASTNAME column from the key, both records will have
the same value (“Samuel”) in the key, and one will be deleted.

Finally, you may lose records by reducing the width of one of the columns that make up the
unique key.

Example: The CUSTDES column, which is part of a unique key, was originally
assigned a width of 12 and you reduce this to 8. If there is already data in this
column, then the customers “North Stars” and “North Street” will both become
“North St”. Consequently, these two records would have the same unique key, and
one of them would be deleted.

Nonunique Key

The nonunique key is used to provide rapid access to data in the table. It should include
columns which are frequently used to retrieve data and which contain highly diversified data.

Consider the difference between the following two columns in the ORDERS table: CUST,

Table Keys PDF last generated: Dec 10, 2024

Priority SDK Page 29

which stores a wide variety of internal customer numbers, and ORDTYPE, which classifies
orders by type of sale. Obviously, the internal customer number distinguishes between
records much better than the sale type. Moreover, it is much more likely that data will be
retrieved by customer number than by sale type. In fact, you might design a query form (a
sub-level of the Customers form, linked to it by the customer’s internal number) which
displays all orders for each customer. Entrance into that form would be extremely slow if
CUST were not a nonunique key.

Note that the header of any key is automatically treated as a nonunique key by the system.
In this context, “header” is defined as a group of consecutive key columns starting from the
first key column. This is true of unique and nonunique keys alike. This can be understood by
considering the example of a phone book. Assuming that (1) entries are sorted first by last
names and then by first names, (2) no person listed has more than one entry, and (3) no two
persons listed share the same last and first names, then the unique key is comprised of two
columns: LASTNAME and FIRSTNAME. So, if you know both a person’s last name and first
name, you can find the telephone number rapidly by skipping forward and backward.
However, if you only know the last name (the header of the unique key) and the address, you
can skip to this last name and then move through all entries until you find the correct
address. Moreover, you can stop checking when you have finished scanning the entries with
this last name. On the other hand, if you only know the person’s first name and address, you
would have no means of finding his or her telephone number without checking every single
entry! Hence, the header of the key (LASTNAME in the above example) is helpful in
accessing data, whereas the rest of the key, without the header, is of little use.

For a table with a unique key comprised of: internal order number (ORD), internal part
number (PART) and date (CURDATE), both the ORD column and the pair ORD/PART would
be considered nonunique. Another example is one of the nonunique keys of the ORDERS
table, which is comprised of two columns: CUST and CLOSED. In this case, the CUST
column is also treated as a nonunique key in its own right.

Rules for Keys

• There may only be one autounique key per table. It must comprise a single column
of INT type which does not appear in any other of the table’s keys, and it must be of
first priority.

• A table must have at least one unique key.
• If there is an autounique key, it must be the first key (1) in the table and a unique

key must be second. If there is no autounique key, one of the unique keys must
have first priority.

• The order in which key columns are designated determines their priorities.
• The column to be included in the key must be included in the table to which the key

is assigned.
• If you add a column to a key without specifying column priority, it will automatically

be assigned the last available priority (e.g., if the key includes two columns, the
added column will receive a priority of 3).

• Changing a key column’s priority will affect the priority of the other columns in the
key.

Note: You can check the consequences of assigning key column priority by means of the
SQL optimizer (see Executing SQL Statements).

Example: In a key comprised of the columns FIRSTNAME and LASTNAME in an
EMPLOYEES table, you would give highest priority to LASTNAME and second
priority to FIRSTNAME.

Table Keys PDF last generated: Dec 10, 2024

Priority SDK Page 30

This would allow for rapid retrieval by LASTNAME:
SELECT * FROM EMPLOYEES WHERE LASTNAME = ’Brown’;

Keys and Record Links

Unique and Autounique keys also determine how record links are generated in forms that are
based on them:

• If the table has an autounique key and a single unique key, the record link will be
based on the unique key column.

• If the table has an autounique key and more than one unique key, and the
autounique key column is displayed in the form, the record link will be based on the
autounique key column.

Example: In the Sales Orders form (based on ORDERS), the link is based on the
contents of ORDNAME, which is the unique key for the table. However, in the
Contacts form (based on PHONEBOOK), the link is based on the autounique
PHONE column.

Table Keys PDF last generated: Dec 10, 2024

Priority SDK Page 31

Creating and Modifying Tables

Introduction

The following options are available from the Table Generator menu (System Management →
Generators → Tables). In order to run them, you must belong to the privilege group of the
superuser (tabula) and the PRIVUSERS system constant must be set to 1.

Important: When Priority is first installed, the Table Generator is invisible by
default. To add it to the Generators menu, enter the Menu Generator form (System
Management → Generators → Menus) and retrieve the Generators menu. Then
add the TABGEN menu using the Menu Items sub-level form. For more information
on adding entities to menus, see Linking the Tree to a Menu.

It is imperative that only one of these programs be run at a time; otherwise, temporary
tables will be overwritten. Thus, you must wait for one program to finish before you can run
another one. Moreover, care must be taken that two individuals do not run any of these
programs at the same time.

Programs for Tables

• Create Table — To create a new table:
1. Enter the Define Table form and record a table name, type (1) and title.
2. Enter the Columns sub-level form and, for each table column, record a

name, type, width, title and decimal precision (if needed).
3. Enter the parallel sub-level form, Keys, and record the new table's keys.
4. For each key, enter the Key Columns sub-level form and record the

columns that make up the key.
5. Exit all forms. The new table is created.
6. A message appears asking if you wish to continue. To create additional

tables, click OK; otherwise, click Cancel.
• Delete Table — You cannot delete a table if at least one of its columns appears in a

form, report or procedure.
• Change Table Name — The revision of the name will have no effect on the forms or

reports based on the table (as these forms and reports refer to the table’s internal
number, rather than its name). However, any SQL statements that refer to the table
will have to be revised accordingly.

• Change Table Title
• Add Column to Table — To add a table column:

1. Run the Add Column to Table program. The Add Column form opens.
2. Choose the table to which you want to add the column.
3. Enter the sub-level form and record the name, type, width, title and decimal

precision (if needed) of the new column.
4. Exit all forms. The new column is added to the table in question.
5. A message appears asking if you wish to continue. To add more table

columns, click OK; otherwise, click Cancel.
• Delete Column from Table

Creating and Modifying Tables PDF last generated: Dec 10, 2024

Priority SDK Page 32

Programs for Columns

• Change Column Name — The revision will have no effect on any forms or reports
that include the column (as it is the column title, rather than the column name, which
appears in the user interface, and as the column is identified in forms and reports by
its internal number). However, any SQL statements that refer to the column will have
to be revised accordingly.

• Change Column Width — Widths will be modified in any existing forms and reports
that include the column. Exercise caution when reducing column width, as stored
data that were originally wider than the new width will be lost (see Unique Keys).

• Change Decimal Precision — You can only change decimal precision in the
following cases (decimal precision will be modified in any existing forms and reports
that include the column):

◦ any real number
◦ a regular integer (current precision = 0) can be changed to the value of the

DECIMAL system constant
◦ a shifted integer can be changed to a precision of 0 (i.e., converted to a

regular integer).

• Change Number Type — Columns of INT type may be changed to REAL type, and
vice versa, during the development phase. Caution is advised: if the column in
question is already part of an SQL query (e.g., in a form trigger or compiled
program), then certain adjustments will have to be made. For instance, the type
context may have to be redefined. When a REAL column is converted into an INT
column, values are rounded off to the nearest integer, and decimal precision is
changed to 0 (e.g., 5.68 becomes 6 and 2.13 becomes 2). When an INT column is
converted into a REAL column, two decimal places are added (i.e., a decimal
precision of 2 is automatically assigned). For instance, a value of 6 becomes 6.00
and a value of 2 becomes 2.00.

Note: Once a custom development has been installed in your working environment,
this operation may fail, in which case you should use a workaround method (see
Column Types).

• Change Column Title — The revision will generally affect all forms and reports that
include the column. The new title will not affect form columns or report columns
which have been assigned a revised title in a specific form or report, as this
overrides the table column title.

Programs for Keys

• Add Key to Table — To add a table key:
1. Run the Add Key to Table program. The Add Key form opens.
2. Indicate the table to which you want to add the key, the type of key (A, U or

N) and the key's priority.
Notes:

▪ There may only be one autounique key per table.
▪ The addition of a unique key to a table that already includes

records should be done with caution. See Unique Keys.
3. Enter the sub-level form and record the columns in the key.
4. Exit all forms.
5. A message appears asking if you wish to continue. Click OK to add the key

to the table.

Creating and Modifying Tables PDF last generated: Dec 10, 2024

Priority SDK Page 33

6. A second message appears asking if you wish to continue. To add more
table keys, click OK; otherwise, click Cancel.

• Delete Key from Table
• Change Key Priority
• Change Autounique to Unique
• Change Unique to Nonunique — You cannot change the type of the first unique

key in the table.
• Add Column to Key — To assign the new column a priority that has already been

assigned to another key column, specify the desired priority. The new column will
take over that priority and the old one (and any subsequent ones) will move down a
priority.

• Delete Column from Key — Once a column is removed from a key, all columns
with a lower priority move up a priority. On the dangers of deleting a column from a
unique key, see Unique Keys.

• Change Column Priority — The changing of a column’s priority will affect the
priority of the other columns in the table.

Creating and Modifying Tables PDF last generated: Dec 10, 2024

Priority SDK Page 34

Table Dictionaries and Reports

Dictionaries and Reports

In addition to enabling the construction and modification of tables, the Tables Generator
provides access to dictionaries and reports that display information on tables already in the
database

• Table Dictionary — Displays all tables in the database; its sub-level forms display
columns, keys, and key columns.

• Column Dictionary — Displays attributes of all table columns.
• Columns per Table report
• Keys per Table report.

Note: In addition, various utilities accessed via the SQL Development program are helpful in
understanding table structure. For details, see Viewing Table Structure.

Table Dictionaries and Reports PDF last generated: Dec 10, 2024

Priority SDK Page 35

DBI Syntax

Introduction

The Database Interpreter (DBI) program comprises a database language created especially
for constructing and modifying database tables.

Syntax Conventions

In delineating the syntax for the Database Interpreter program, the following conventions are
employed:

• Anything within brackets is optional (e.g., [filename]). If brackets are omitted, the
argument must be specified.

• The “|” symbol between several options indicates that only one may be chosen (e.g.,
[FORMAT | DATA | ASCII]).

• When a set of options is enclosed within curved brackets, one of the various options
must be chosen (e.g., { form/trigger | form/form_column/trigger }).

• Characters in bold must be specified exactly as they appear. Characters in italics
have to be replaced by appropriate values. An underscore between two or more
italicized words indicates that they should be treated as a single value (e.g., SQLI
$U/query_file parameter).

• All punctuation must be designated as is (commas, colons, parentheses, and
especially the semicolon that is required at the end of each SQL statement)

• Ellipses (...) indicate that several values may be indicated for the previous argument
(e.g., table_name, ...).

• In examples, curved brackets {} enclosing text signify a comment which does not
belong to the SQL statement. Comments within SQL statements are enclosed within
a pair of slashes and asterisks (e.g., /* Open failed; no record meets condition */).

Modifying Database Tables via SQL Statements

In addition to using the options in the Tables Generator, you can run the SQL Development
program and modify tables by means of SQL statements, using the syntax outlined below,
provided you belong to the privilege group of the superuser (tabula) (for details, see Installing
Your Customizations).

Syntax for Tables

Create table

CREATE TABLE table_name [type]
column_name1 (type, width, [decimal_precision,] ‘title’)
[column_name2 (type, width, [decimal_precision,] ‘title’)]
[column_name3 ...]
[AUTOUNIQUE (column_name)]
UNIQUE (column_name, ...)
[UNIQUE ...]

DBI Syntax PDF last generated: Dec 10, 2024

Priority SDK Page 36

[NONUNIQUE (column_name, ...)]
[NONUNIQUE ...];

Delete table
DELETE TABLE table_name;

Change table name

FOR TABLE table_name
CHANGE NAME TO new_name;

Change table title

FOR TABLE table_name CHANGE TITLE TO 'new_title';

Syntax for Columns

Add column to table

FOR TABLE table_name
INSERT column_name (type, width, [decimal_precision,] 'title');

Delete column from table

FOR TABLE table_name DELETE column_name;

Change column name

FOR TABLE table_name COLUMN column_name
CHANGE NAME TO new_name;

New column width

FOR TABLE table_name COLUMN column_name CHANGE WIDTH TO integer;

New column title

FOR TABLE table_name COLUMN column_name CHANGE TITLE TO 'title';

New decimal precision

FOR TABLE table_name COLUMN column_name
CHANGE DECIMAL TO decimal_precision;

Change number type

/*from INT to REAL and vice versa*/
FOR TABLE table_name COLUMN column_name
CHANGE NUMBER TYPE;

/*only from INT to REAL; if already REAL, leaves as is*/

FOR TABLE table_name COLUMN column_name
CHANGE NUMBER TYPE TO REAL;

DBI Syntax PDF last generated: Dec 10, 2024

Priority SDK Page 37

/*only from REAL to INT; if already INT, leaves as is*/

FOR TABLE table_name COLUMN column_name
CHANGE NUMBER TYPE TO INT;

Syntax for Keys

Add new key to table

FOR TABLE table_name
INSERT { AUTOUNIQUE | UNIQUE | NONUNIQUE}
(column_name, ...)
[WITH PRIORITY key_priority];

Delete key from table

FOR TABLE table_name
DELETE KEY {key_priority | (column_name 1, ... , column_name n) };

Change key priority

FOR TABLE table_name
KEY { key_priority | (column_name 1, ... , column_name n) }
CHANGE PRIORITY TO new_key_priority;

Change key type from autounique to unique

FOR TABLE table_name
CHANGE AUTOUNIQUE TO UNIQUE;

Change key type from unique to nonunique

FOR TABLE table_name
KEY { key_priority | (column_name 1, ... , column_name n) }
CHANGE UNIQUE TO NONUNIQUE;

Syntax for Key Columns

Add new column to key

FOR TABLE table_name
KEY { key_priority | (column_name 1, ... , column_name n) }
INSERT column_name
[WITH PRIORITY column_priority];

Delete column from key

FOR TABLE table_name
KEY { key_priority | (column_name 1, ... , column_name n) }
DELETE column_name;

Change column priority in key

FOR TABLE table_name

DBI Syntax PDF last generated: Dec 10, 2024

Priority SDK Page 38

KEY { key_priority | (column_name 1, ... , column_name n) }
COLUMN column_name
CHANGE PRIORITY TO new_column_priority;

DBI Syntax PDF last generated: Dec 10, 2024

Priority SDK Page 39

Syntax Conventions

Syntax Conventions

Syntax for SQL statements in Priority is based on ANSI standard syntax and its
interpretation, but also includes several additional features. Most of the material applies to all
SQL queries in Priority — those found in form triggers, step queries in procedures, load
queries and expressions for calculated form columns and report columns. Occasionally,
however, reference is made to features that only apply to one or two of these (e.g., form
triggers). When this is the case, this restriction is explicitly stated.

In delineating SQL syntax, the following conventions are employed:

• Anything within brackets is optional (e.g., [filename]). If brackets are omitted, the
argument must be specified.

• The “|” symbol between several options indicates that only one may be chosen (e.g.,
[FORMAT | DATA | ASCII]).

• When a set of options is enclosed within curved brackets, one of the various options
must be chosen (e.g., { form/trigger | form/form_column/trigger}).

• Characters in bold must be specified exactly as they appear. Characters in italics
have to be replaced by appropriate values. An underscore between two or more
italized words indicates that they should be treated as a single value (e.g., SQLI
$U/query_file parameter).

• All punctuation must be designated as is (commas, colons, parentheses, and
especially the semicolon that is required at the end of each SQL statement)

• Ellipses (...) indicate that several values may be indicated for the previous argument
(e.g., table_name, ...).

• In examples, curved brackets {} enclosing text signify a comment which does not
belong to the SQL statement. Comments within SQL statements are enclosed within
a pair of slashes and asterisks (e.g., /* Open failed; no record meets condition */).

Syntax Conventions PDF last generated: Dec 10, 2024

Priority SDK Page 40

View Table Structure

The SQL Development Program

The SQL Development (WINDBI) program (System Management → Generators →
Procedures) provides access to utilities that can help you understand table structure in
Priority. The main utility is Dump Table, which creates a file containing the full definition of a
designated table. The first line indicates the table name, title and type; subsequent lines
delineate its columns and keys.

This is the result of the Dump Table program for the ORDSTATUS table:

CREATE TABLE ORDSTATUS 'Possible Statuses for Orders' 0
ORDSTATUS (INT,13,'Order Status (ID)')
ORDSTATUSDES (CHAR,12,'Order Status')
INITSTATFLAG (CHAR,1,'Initial Status?')
CLOSED (CHAR,1,'Close Order?')
PAYED (CHAR,1,'Paid?')
SORT (INT,3,'Display Order')
OPENDOCFLAG (CHAR,1,'Allow Shipmt/ProjRep')
CHANGEFLAG (CHAR,1,'Allow Revisions?')
CLOSESTATFLAG (CHAR,1,'Closing Status?')
REOPENSTATFLAG (CHAR,1,'Reopening Status?')
INTERNETFLAG (CHAR,1,'Order from Internet?')
OPENASSEMBLY (CHAR,1,'Open Assembly Status')
CLOSEASSEMBLY (CHAR,1,'End Assembly Status')
PARTIALASSEMBLY (CHAR,1,'Partial Assm. Status')
ESTATUSDES (CHAR,16,'Status in Lang 2')
MANAGERREPOUT (CHAR,1,'Omit from Reports')
AUTOUNIQUE (ORDSTATUS)
UNIQUE (ORDSTATUSDES);

To run the program, from the Dump menu, select Table. In the input window, designate the
table you want to see. To dump more than one table at a time, separate table names with a
space.

Additional utilities are accessed from the Queries menu (in the same window):

• Select All retrieves all records from a designated table.
• Table Columns shows the columns in a table.
• Table Columns incl. precision provides the same information, but also displays

decimal precision.
• Table Keys shows the keys in a table.

View Table Structure PDF last generated: Dec 10, 2024

Priority SDK Page 41

Executing SQL

The SQL Interpreter

The SQL Development (WINDBI) program (System Management → Generators →
Procedures) provides access to the SQL Interpreter, which is used to execute SQL
statements (from the Execute menu, select SQL interpreter). Use of the Interpreter requires
permission, which is assigned to users in the Authorized for SQL column of the Personnel
File (in the Human Resources menu).

In principle, any statement can be written as input to the interpreter. However, in order to
avoid violations of referential integrity, it is highly advisable to refrain from using the
interpreter for updates and deletions of the database. As Priority provides for full automatic
protection of referential integrity in its forms, such manipulations should be executed via
forms or form interface programs (see Forms and Interfaces).

Additionally, anyone executing INSERT, UPDATE or DELETE statements must belong to the
privilege group of the superuser (tabula).

Additional options for using the SQL Interpreter are:

• + optimizer — displays the steps of data retrieval.
• + execution — displays the steps of data retrieval and indicates the number of

records retrieved in each step.

Note: By default, the SQL Development program does not output data in unicode. If you
need to view data that contains special characters (e.g. text from languages such as Spanish
or German), remember to append the UNICODE option to your query.

Executing SQL PDF last generated: Dec 10, 2024

Priority SDK Page 42

SQL Functions and Variables

Introduction

Priority offers a set of system functions that can be used to retrieve set results (e.g., the
current date and time). Furthermore, it recognizes a number of kinds of variables. These
functions and variables are used in SQL statements.

Functions are identified within the SQL statement by the prefix “SQL.” Variables are identified
by the prefix “:” (colon).

Each function and variable must belong to one of the following types: CHAR, INT, REAL,
DATE, TIME or DAY. These are all valid column types (for an explanation of each, see Table
Columns).

System Functions

Here is a partial list of SQL functions recognized by Priority.

• SQL.ENV: the current Priority company (CHAR type)
• SQL.USER: the internal number of the current user (INT type)
• SQL.GROUP: the internal user number of the group representative from whom the

current user inherits privileges (INT type)
• SQL.DATE: the current date and time (DATE type)
• SQL.DATEUTC: the current date and time in UTC (DATE type)
• SQL.DATE8: the current date without time (DATE type)
• SQL.TIME: the current time (TIME type)
• SQL.DAY: the current weekday (DAY type)
• SQL.LINE: the line number during retrieval from the database; retrieved records are

numbered consecutively (INT type)
• SQL.TMPFILE: a full path to a temporary file name; you can use this path to link

tables to the file
• SQL.LANGUAGE: the language code of the current user
• SQL.ENVLANG: the language defined for the current Priority company (in the

Companies form)
• SQL.WEBID, SQL.CLIENTID: identification variables (INT type and CHAR type,

respectively) used for Priority Lite only.
• SQL.GUID: returns a random 32-character string, using the operating system’s

UUID function.
• SQL.PRETTY: returns the External Access ID in Priority Connect for the current

company (in lowercase), or from another company on the server (in uppercase). For
example, suppose we have a server with 2 companies, Example Company and
Demo Company, with only the latter having an External Access ID prettydemo:

SELECT SQL.PRETTY FROM DUMMY FORMAT;
/* In Demo Company, returns: prettydemo

In Example Company, returns: PRETTYDEMO

• SQL.CLOUDURL: For an environment hosted in Priority Software’s Cloud, returns
its address.

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 43

• SQL.REGNAME: Returns the system’s registration name - same as the one that
appears when clicking About Priority in the Help menu.

• SQL.HOSTING: Returns 1 if the system is hosted in Priority Software’s Cloud, 0
otherwise.

• SQL.ORACLE: Returns 1 for a system with an Oracle database, 2 for a system with
SQL Server as the database.

Examples:

1. You can use SQL.USER and SQL.DATE for an electronic signature.

2. To return a numbered list of parts, use:

SELECT SQL.LINE, PARTNAME FROM PART FORMAT;

Variables

There are several types of SQL variables:

• form column variables, determined by the content of a given column in a given form
• parameter variables, determined by the content of a given parameter in a given

procedure step
• user-defined variables
• system variables

Regardless of type, all variables are limited to a size of 120 characters.

System Variables

:RETVAL — the return value of the previous query (INT type).

:SCRLINE — the current form line, in triggers only (INT type).

:PAR1, :PAR2 and :PAR3 — parameters for error and warning message commands (CHAR
type); used in form triggers, step queries (in procedures) and load queries; maximum number
of characters for each parameter is 64.

:PAR4 — stores the value of the first argument in CHOOSE- triggers (CHAR type). :PAR4 is
not supported in the Priority Web Interface.

:FORM_INTERFACE (INT type) — when assigned a value of 1, indicates that form records
are filled by a form load interface rather than the user.

:FORM_INTERFACE_NAME (CHAR type) — when the :FORM_INTERFACE variable has a
value of 1, the current variable is assigned the name of the form interface in question (e.g.,
see BUF16 in the LOGPART form; on buffers, see Using Buffers). If empty, but
:FORM_INTERFACE is 1, the records are filled in using the REST API.

:PREFORMQUERY (INT type) — assign it a value of 1 in a PRE-FORM trigger to run the
trigger after each query.

:ACTIVATEREFRESH (INT type) — assign it a value of 1 in a PRE-FORM trigger to refresh
all retrieved records after a Direct Activation.

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 44

:ACTIVATE_POST_FORM (CHAR type, width 1) — assign it a value of Y in a PRE-FORM
trigger to activate the form’s POST-FORM trigger upon exiting the form, even if no changes
have been made (e.g., see PRE-FORM trigger in the TRANSORDER_H form).

:KEYSTROKES — use in a PRE-FORM trigger to store a string containing reserved words
which imitate keyboard actions.

:HEBREWFILTER (INT type) — for users of Priority in Hebrew. This variable is used to
ensure that Hebrew text is displayed correctly when exporting data from Priority using an
SQL query. When this variable receives a value of 0, the characters in exported Hebrew text
appear backwards (e.g., assign it a value of 1 to ensure that such ;(םילשורי טרוא ס"יב
characters appear in the correct order (e.g., .(בי"ס אורט ירושלים

:HTMLACTION, :HTMLVALUE and :HTMLFIELD — used in Priority Lite procedures (see
Designing HTML Reports for Priority Lite/Dashboards).

:_IPHONE — used in Priority Lite procedures. This variable receives a value of 1 when the
procedure in question is run from a mobile device (e.g., an iPhone or Android device), and a
value of 0 when the procedure is run from a regular PC or iPad. By referring to this variable
within the procedure itself (or one of its component reports), the procedure can be run
differently depending on the type device from which it is accessed (e.g., see step 40 in the
WWWDB_PORDERS_A procedure).

:NOHTMLDESIGN — used in processed reports and Priority Lite procedures. When this
variable receives a value of 1, reports will be produced in non-HTML format, even if HTML
design options are defined for report columns. This variable is sometimes used in
conjunction with the previous one (e.g., see step 40 in the WWWDB_PORDERS_A
procedure).

:HTMLMAXROWS — used in processed reports and **Priority Lite* procedures to limit the
number of results that appear on the page. This is useful, for instance, if you want to run a
report that displays the last 5 sales orders placed by the customer, or if you want to enable
users to indicate how many results to display on a particular page of your Priority Lite*
website (e.g., see step 40 in the WWWDB_ORDERS_A procedure).

:_CHANGECOUNT (INT type) — stores the number of fields in the current form record that
have been revised; useful in a PRE-UPDATE or POST-UPDATE trigger when you want to
perform a check or other action only if a single field, or a specific set of fields, has been
changed.

CHANGECOUNT only counts fields that are visible in the form. Hidden fields are not
counted, even if they are changed by post-field triggers. For read-only fields that are
changed by triggers, only fields that are part of the base table of the form are counted.

:PRINTFORMAT (INT type) – stores the print format chosen by the user when a document is
printed. Print formats are saved in the EXTMSG table.

:SENDOPTION (CHAR type) — stores the user’s selection in the Print/Send Options
dialogue box when a document is printed.

:ISSENDPDF (INT type) — when a value of 1 is received, creates a PDF document rather
than an HTML document (used with :SENDOPTION).

:WANTSEDOCUMENT (INT type) — stores the user’s selection in the Are sent e-mails
digitally signed by Outlook column of the Mail Options dialogue box.

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 45

:EDOCUMENT (INT type) — used in e-documents (see Creating E-Documents). When this
variable receives a value of 1, sent e-documents will be synchronized with Priority and
recorded as a customer task.

:GROUPPAGEBREAK (INT type) — used in processed reports to add a page break for the
first "Group by" set (see Display of Grouped Records). When this variable receives a value of
1, each group of records in the report will appear on a new page.

:FIRSTLINESFILL (INT type) — used in forms. When the sub-level form is entered, the
variable automatically receives a value of 1; once the user runs a query in the form, the
variable receives a value of 0. Useful when you want to run an automated query upon
entrance into the sub-level form without restricting which records can be retrieved by a user-
defined query. For example, the condition defined for the CURDATE column of the
CUSTNOTES form (in the Form Column Extension sub-level of the Form Columns form) is
used to retrieve all recent tasks upon first entering the form. Once these tasks have been
loaded, however, users can run a query to retrieve older tasks by pressing F11.

:SQL.NET (INT type) — stores 0 when working in the Windows interface and 1 when working
in the web interface.

:EXTERNAL.VARNAME (CHAR type) – used in procedures to refer to variables inputted as
part of the WINACTIV command (see Running a Procedure from SQLI Step). External
variables will always be of type CHAR, even if they contain other types of data.

:WEBSDK_APP_ID (CHAR type) — when entities are accessed via Priority’s Web SDK
using a per-application license, this variable stores the application ID provided by Priority
Software for that application. Use this variable to tailor behavior based on the specific
application used to access the system.

:WEBSDK_APP_NAME (CHAR type) — this variable is filled in when an appname is
specified by the login function of the Web SDK. Use this variable to tailor behavior based on
the specific application used to access the system.

:FROMTTS (INT type) — set to 1 when procedures or reports are run via the Tabula Task
Scheduler, set to 0 otherwise. This variable is useful when you want to set behavior that is
relevant only when running the program via the TTS (e.g., setting a default value in input that
is usually provided by the user).

:NETDEFS_WCFURL (CHAR type) — this variable can only be accessed from within
procedures. It (and the rest of the NETDEFS variables) provide data from the settings of the
application server configured for the system. This one contains the WCF URL of the
application server.

:NETDEFS_SERVERURL (CHAR type) — this variable can only be accessed from within
procedures. It (and the rest of the NETDEFS variables) provide data from the settings of the
application server configured for the system. This one contains the Server URL of the
application server.

:NETDEFS_MARKETGATEURL (CHAR type) — this variable can only be accessed from
within procedures. It (and the rest of the NETDEFS variables) provide data from the settings
of the application server configured for the system. This one contains the Marketgate URL of
the application server.

:NETDEFS_SESSIONDIRECTORY (CHAR type) — this variable can only be accessed from
within procedures. It (and the rest of the NETDEFS variables) provide data from the settings

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 46

of the application server configured for the system. This one contains the where session data
is stored on the application server.

:NETDEFS_SYSTEMIMAGES (CHAR type) — this variable can only be accessed from
within procedures. It (and the rest of the NETDEFS variables) provide data from the settings
of the application server configured for the system. This one contains where images are
stored on the application server.

:NETDEFS_SYSTEMMAIL (CHAR type) — this variable can only be accessed from within
procedures. It (and the rest of the NETDEFS variables) provide data from the settings of the
application server configured for the system. This one contains where mail files (such as
attachments) are stored on the application server.

:NETDEFS_TMPDIRECTORY (CHAR type) — this variable can only be accessed from
within procedures. It (and the rest of the NETDEFS variables) provide data from the settings
of the application server configured for the system. This one contains the where temporary
files are stored by the application server.

:NETDEFS_TMPURL (CHAR type) — this variable can only be accessed from within
procedures. It (and the rest of the NETDEFS variables) provide data from the settings of the
application server configured for the system. This one contains the TMPURL of the
application server.

:NETDEFS_NETTABINI (CHAR type) — this variable can only be accessed from within
procedures. It contains the location of the tabula.ini file for the current environment.

Reserved Words for :KEYSTROKES Variable

:KEYSTROKES should only be used in PRE-FORM triggers.

The following reserved words are useful with the :KEYSTROKES variable:

• {Activate}N (runs the form’s Nth Action)
• {Exit} (executes the query)
• {Key Right}, {Key Left}, {Key Up}, {Key Down}, {Page Up}, {Page Down}
• {Sub-level}N (opens the form’s Nth sub-level form),
• {Table/Line View} (toggles between multi-record and full-record display).

Examples:

KEYSTROKES = *{Exit}; (retrieves all form records)

KEYSTROKES = {Key Right} 01/01/06 {Exit} (moves one column to the right
and executes a query that retrieves any records with Jan. 1, 2006, in the field).

Variable Types

All form column variables and parameter variables take on their respective column types. In
all other cases, SQL defines variable type according to the context. That is, such variables
will inherit the type of any other variable in the expression which is already defined in the
form. For instance, if the QUANT and PRICE columns in the ORDERITEMS form are defined
as REAL, then the :totprice variable in the following expression is assumed to be a real
number as well:

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 47

SELECT :ORDERITEMS.QUANT * :ORDERITEMS.PRICE INTO :totprice
FROM DUMMY;

or

:totprice = :ORDERITEMS.QUANT * :ORDERITEMS.PRICE;

Similarly, a variable will inherit the type of a constant value appearing in the expression. For
instance, in the expression :i + 5, i is assumed to be an INT variable.

Given an expression without a type context, SQL assigns a default variable type of CHAR.
However, for a string with a width of 1 (single character), you must specify “\0 +” or use a
declaration for that single CHAR variable, for example: :SINCHAR = '\0';.

To obtain a variable of REAL type, create the proper type context by adding the prefix “0.0 +”
to the expression. To obtain a variable of INT, DATE, TIME or DAY type, add the prefix “0 +”.

For instance, assuming that the variable :j (which contains a real number) has not yet been
defined, you would use the following statement to select its values:

SELECT 0.0 + :j FROM DUMMY FORMAT;

or

:j = 0.0;

If you need a variable of REAL type with more precision than two decimal places, initialize it
as follows:

:CONV = 0E-9;

SQL Functions and Variables PDF last generated: Dec 10, 2024

Priority SDK Page 48

Flow Control

Flow Control Commands

Flow control commands are used to affect execution flow, mainly in long sequences of SQL
commands (e.g., form triggers). They include:

• GOTO — causes a jump forward to a given label when the statement is successful
• LOOP — causes a jump backward to a given label when the statement is

successful
• LABEL — signifies the place at which to continue execution of SQL statements

after a GOTO or LOOP command has been encountered. The label number must
be identical to that specified for the appropriate GOTO or LOOP command.

• SLEEP — signifies the number of seconds to pause before continuing; generally,
used when waiting for a response from an external device

• GOSUB — causes a jump to a specific sub-routine.
Note: Sub-routines can receive an identifier number from 1-999999.

• SUB — signifies the beginning of a sub-routine; no commands from here until the
next RETURN command will be executed unless specifically called by a GOSUB
command

• RETURN — ends the sub-routine and continues with the statement following the
appropriate GOSUB command

• END — discontinues execution of SQL statements
• ERRMSG — causes failure and prints out an error message on screen; used in form

triggers, step queries (in procedures) and load queries

• WRNMSG — prints out a warning message on screen; used in form triggers, step
queries and load queries

Note: When used in a step query, this does not necessarily delay the procedure
execution flow in the Priority web interface. To ensure interruption of execution flow,
use the CONTINUE basic command (see Procedure Steps).

• REFRESH— refreshes screen with updated values after data manipulation; used
only in form triggers

• MAILMSG— sends a message by internal mail to a user or group of users, or by
external mail to one or more e-mail addresses; can include an attachment

Syntax of the Flow Control Commands

See Syntax Conventions.

The syntax of each of these commands is as follows:

• GOTO label_number [WHERE condition];
• LOOP label_number [WHERE condition];
• LABEL label_number;
• SLEEP number_of_seconds;
• GOSUB sub_number [WHERE condition];
• SUB sub_number;

Flow Control PDF last generated: Dec 10, 2024

Priority SDK Page 49

• RETURN;
• END [WHERE condition];
• ERRMSG msg_number [WHERE condition];
• WRNMSG msg_number [WHERE condition];
• REFRESH 1;
• MAILMSG msg_number TO { USER | GROUP | EMAIL } ‘recipient’ [DATA

‘attachment_filename’] [WHERE condition];

Usually, the MAILMSG command retrieves the e-mail's subject and content from the
message specified in the msg_number argument, and any file specified in the [DATA
attachment_filename] option will be included as an attachment. However, you can also have
the MAILMSG command create an e-mail on the basis of an existing HTML document by
using a msg_number argument that indicates an empty message and using the [DATA
attachment_filename] option to indicate an HTML attachment.

Notes:

• If you use this option, the attachment indicated by the attachment_filename
argument must be an HTML file.

• If you are working on a Unicode installation, the HTML attachment should be saved
in a Unicode-compliant format.

If a value has been assigned to the :_REPLYTOEMAIL variable, the MAILMSG command
sends the e-mail using that value as the reply-to e-mail address. This setting overrides any
default reply-to e-mail address defined for the message.

Note: This setting is applied only if you have set up external mail without Outlook.

Examples of Usage

This example illustrates the following:

• declare and open a cursor
• if the open fails, go to end
• if it succeeds, fetch the next record
• use of sub routine
• as long as there are more records to be fetched, execute the designated data

manipulations on each record
• once there are no more records, close the cursor
• end execution.

DECLARE C CURSOR FOR ...
OPEN C;
GOTO 9 WHERE :RETVAL = 0; /* Open failed; no record meets condition */
LABEL 1;
FETCH C INTO ...
GOTO 8 WHERE :RETVAL = 0; /* No more fetched records */

'Database manipulations with the fetched fields;
usually updates of some sort'

GOSUB 100 WHERE ...;
LOOP 1;
LABEL 8;

Flow Control PDF last generated: Dec 10, 2024

Priority SDK Page 50

CLOSE C;
LABEL 9;
END;
SUB 100;

'More database manipulations with the fetched fields'

RETURN;

Note: In this example the sub-routine is defined at the end. You can also define the sub-
routine at the beginning of the text.

Using Sub-routines

Sub-routines are useful, for example, for loading data. The SUB command (together with an
accompanying integer) marks the beginning of the sub-routine; the RETURN command
signifies its end. Sub-routines are only executed when specifically called by the appropriate
GOSUB command. Thus, GOSUB 1 calls up SUB 1, GOSUB 2 calls up SUB 2, and so on.
Once RETURN is encountered, execution continues from the statement following the
relevant GOSUB command.

Sub-routines can receive an identifier number from 1-999,999.

Flow Control PDF last generated: Dec 10, 2024

Priority SDK Page 51

Additions and Revisions to Standard
SQL Commands

Additions and Revisions to Standard SQL
Commands

Priority offers some additional features to several standard SQL commands: SELECT,
ORDER BY and LIKE. Furthermore, it entails revisions to the standard SQL join.

See also Syntax Conventions .

Output Formats for SELECT

In Priority, an output format command must be added to the end of a SELECT statement in
order to obtain output. There are several output format commands:

• FORMAT— generates output comprised of column headings and data.

• TABS— generates data separated by tabs (\t) with titles of retrieved columns at the
beginning of each record and line feed (\n) at the end of each record; useful for
preparing files that can be loaded into a spreadsheet.

Note: To create the file without titles, initialize the :NOTABSTITLE variable to 1
before executing the query.

• DATA— generates file structure information (header), marked as comment lines by
the symbol #, as well as the data; useful for exporting Priority data to an external
database.

• ASCII— produces output of data only (no column headings) with no spaces in
between columns.

• SQLSERVER— same as TABS, except that output does not include the titles of
retrieved columns.

• ORACLE— generates a file for sqlldr (SQL Loader – an Oracle utility used to load
data from external files).

• UNICODE— generates output in Unicode (UTF-16) format. Add this option if the
data contains special characters (such as those in languages such as Spanish or
German).

• ADDTO— adds data to end of specified file, rather than replacing the contents of
the file.

The syntax of these commands is:

SELECT ... [{ FORMAT | TABS | DATA | ASCII | SQLSERVER | ORACLE} [UNICODE]
[ADDTO] ['filename']];

If a file name is specified (enclosed in single quotes), the output is dumped into that file;
otherwise, it appears in standard output.

Additions and Revisions to Standard SQL Commands PDF last generated: Dec 10, 2024

Priority SDK Page 52

Note that the file name can be an expression. For instance,

SELECT * FROM PART
WHERE PART > 0
FORMAT STRCAT ('/tmp/', 'part.sav');

will store results in the tmp directory in a file named part.sav.

Extended LIKE Patterns

Priority includes several LIKE patterns in addition to those found in standard SQL (“_” and
“%” wildcards, which represent a single character and an unlimited number of characters,
respectively).

For instance, the symbol “ | “ may be used in pairs (as brackets) to enclose several
characters or a range of characters. Any single character appearing within the brackets or
falling within the range may be retrieved (e.g., | A–D | % yields any character or string
beginning with the letter A, B, C or D, such as Armchair, Desk, Chair).

Moreover, the symbol “\^” may be added before one or more characters enclosed in
brackets, to retrieve any character other than those (e.g. | \^A–D | % yields any character or
string that does not begin with the letter A, B, C, or D).

Finally, the delimiter “\” should be used to retrieve one of the above symbols. For instance,
A\% yields the string A%.

For more examples, see the search criteria designated in the User Interface Guide.

It is important to remember that LIKE expressions need to appear in a single line.

Correct Example

WHERE (PARTNAME LIKE '%' OR PART.PARTDES LIKE '%'
OR EPARTDES LIKE '%')

Incorrect Example

WHERE (PARTNAME LIKE '%' OR PART.PARTDES
LIKE '%' OR EPARTDES LIKE '%')

Outer Join

An outer join is represented in Priority’s syntax by a question mark (?) following the table ID:

SELECT ...FROM FNCITEMS, FNCITEMSB ?
WHERE FNCITEMSB.FNCTRANS = FNCITEMS.FNCTRANS
AND FNCITEMSB.KLINE = FNCITEMS.KLINE;

As opposed to regular joins, an outer join preserves unmatched rows. Thus, if there is no join
record, a null record will be retrieved from the join table and the query will succeed.

Example: The FNCITEMS table, which stores journal entry items, is linked to
FNCITEMSB, a table which (among other things) stores profit/cost centers from

Additions and Revisions to Standard SQL Commands PDF last generated: Dec 10, 2024

Priority SDK Page 53

groups 2-5. An outer join is required, as not all records in FNCITEMS have values
in FNCITEMSB (that is, a given journal entry item may not necessarily include
profit/cost centers from groups 2-5).

Using OFFSET and FETCH as part of SQL Queries

Priority supports the saved words OFFSET and FETCH as part of SQL queries. These are
useful for cases where you need to create pages of results.

Queries using OFFSET and FETCH must include an ORDER BY statement that explicitly
sorts the results.

Use OFFSET to retrieve results starting from a specified returned row.

Example: The following request retrieves orders dated later than 01/01/19, and
returns orders from starting with the 101th order retrieved. Orders are sorted by
internal order number:

:FR = 100;
SELECT ORD, ORDNAME FROM ORDERS WHERE CURDATE > 01/01/19
ORDER BY 1
OFFSET :FR
FORMAT;

To limit the amount of rows returned in the response, use FETCH and specify the number of
rows to retrieve.

Example:

:FR = 100;
:MAX = 75;
SELECT ORD, ORDNAME FROM ORDERS WHERE CURDATE > 01/01/19
ORDER BY 1
OFFSET :FR FETCH NEXT :MAX ROWS ONLY
FORMAT;

In this case, we FETCH :MAX =75, limiting the results to a maximum of 75 rows.
We retrieve starting from row 101, as the results are OFFSET by 100.

Additions and Revisions to Standard SQL Commands PDF last generated: Dec 10, 2024

Priority SDK Page 54

Execution Statements

Introduction

Priority recognizes several commands which affect execution of the SQL statement (or
group of statements). See also Syntax Conventions.

ENV

The ENV command changes the current Priority company to the specified company. The
syntax is:

ENV company;

where the company can be defined by a string (the value appearing in the Company column
of the Companies form) or a variable.

Note: In the web interface, the ENV command has a minor limitation. When used within a
procedure, if you then open a form from within the procedure, it will still open the form in the
original company (the one in which the procedure was run) rather than the one specified
using ENV.

EXECUTE

The EXECUTE command executes a specified program with designated parameters. It is
mainly used in form triggers, in order to activate a program from within the form or from an
SQLI step in a procedure. In any program that uses an EXECUTE command, execution
occurs in the present company. It may take place in the background.

The syntax is:

EXECUTE [BACKGROUND] program[parameter, ...];

where the program and each of its parameters can be specified as a string or variable. (All
parameters are separated by commas. For strings, each string is also enclosed in a set of
apostrophes).
Note: For the Priority web interface, see Working with the Priority Web Interface.

Execution Statements PDF last generated: Dec 10, 2024

Priority SDK Page 55

LINK and UNLINK

The Commands

The LINK mechanism creates a temporary copy of a given database table. This linked file
serves a number of purposes:

• It can serve as a parameter comprised of a batch of records.
• It can function as a work area in which data manipulation is performed prior to report

output. Results are then sent for display in the processed report.
• It is used by form load interfaces.

The LINK command is complemented by the UNLINK command.

Syntax

See Syntax Conventions.

LINK table_name1 [ID] [TO filename1];

{ database manipulations }

UNLINK [AND REMOVE] table_name1 [ID];

Explanation and Examples

The LINK command ties a designated table to a temporary file having an identical structure,
including all the columns and keys from the original table. If the linked file does not yet exist,
this command creates it. If it does exist, the command simply executes the linkage. If you
specify a file name, this file can be used later on.

Example: The SQLI program can create a linked file in one procedure step, whose
contents are used in a report in the next step.

The linked file is initially empty of data. All subsequent operations that refer to the original
table are actually executed upon that temporary file, until the UNLINK command is
encountered.

You cannot link the same table more than once prior to an UNLINK. If you do, the second
(and any subsequent) LINK to that table will return a value of –1 (i.e., that particular query
will fail, but the rest of the queries will continue to be executed). However, you can
circumvent this restriction by adding a different suffix (table ID) to the table name for each
link.

Example: While you cannot link the ORDERS table twice, you can link both
ORDERS A and ORDERS B. In this case, you will obtain another copy of the table
for each link, and these may be used as separate files. Then, after linking, you
could perform the following query:

LINK and UNLINK PDF last generated: Dec 10, 2024

Priority SDK Page 56

INSERT INTO ORDERS A
SELECT * FROM ORDERS B
WHERE ...;

After the database manipulations are completed and the required data is stored in the linked
file, you can simply display the results in a processed report, without affecting the database
table. The UNLINK command stores the temporary file in the specified (linked) file and
undoes the link. All succeeding operations will be performed on the original table. If the AND
SET option is used, then the copy of the table, with all its data manipulations, will be stored
in the original table. All operations that succeed the UNLINK command will be performed on
the database table and not on the copy.

Use the AND REMOVE option if you wish the linked file to be deleted when it is unlinked.
This is necessary when working with loops, particularly when manipulations are carried out
on the data in the linked file. If you do not remove the linked file, and the function using LINK
and UNLINK is called more than once, you will receive the same copy of the table during the
next link. So, if you want the LINK command to open a new (updated) copy of the table, use
UNLINK AND REMOVE.

Important! Working with a linked file can be dangerous when the link fails. If the query is
meant to insert or update records in the linked table and the link fails, then everything is
going to be executed on the real table! Therefore, you must either include an ERRMSG
command for when the link fails, or use the GOTO command so as to skip the part of the
query that uses the linked table.

For example:

SELECT SQL.TMPFILE INTO :TMPFILE;
LINK ORDERS TO :TMPFILE;
ERRMSG 1 WHERE :RETVAL <= 0;
/*database manipulation on the temporary ORDERS table */
UNLINK ORDERS;

or:

SELECT SQL.TMPFILE INTO :TMPFILE;
LINK ORDERS TO :TMPFILE;
GOTO 99 WHERE :RETVAL <= 0;
/*database manipulation on the temporary ORDERS table */
UNLINK ORDERS;
LABEL 99;

LINK ALL

LINK ALL is a special variant of the LINK command. It is shorthand for linking a table to a
temporary file, and then inserting all the records from the original table into the newly linked
one. As in other links, make sure to check the link was successful and unlink when you are
done manipulating the records.

For example:

SELECT SQL.TMPFILE INTO :TMPFILE;
LINK ALL ORDERS TO :TMPFILE;
GOTO 99 WHERE :RETVAL <= 0;

LINK and UNLINK PDF last generated: Dec 10, 2024

Priority SDK Page 57

/*database manipulation on the temporary ORDERS table */
UNLINK ORDERS;
LABEL 99;

Is equivalent to:

SELECT SQL.TMPFILE INTO :TMPFILE;
LINK ORDERS TO :TMPFILE;
GOTO 99 WHERE :RETVAL <= 0;
INSERT INTO ORDERS
SELECT * FROM ORDERS ORIG
WHERE ORIG.ORD <> 0;
/*database manipulation on the temporary ORDERS table */
UNLINK ORDERS;
LABEL 99;

LINK ALL should be used sparingly, if at all. Only in rare cases do you need the entire
population of a table, and being more specific about the records you want to work on will
improve performance.

LINK and UNLINK PDF last generated: Dec 10, 2024

Priority SDK Page 58

Return Values and Statement Failure

Table of Return Values and Statement Failure

The following table displays return values for each SQL statement and delineates when each
statement fails.

Command Return Values Failure When…

DECLARE 1 (success) never

OPEN
number of records

0 upon failure

too many open cursors (>100), including recursive
opens

no selected records

CLOSE
1 upon success

0 upon failure
cursor is not open

FETCH
1 if fetched

0 if end of cursor

cursor is not open

no more records in cursor

SELECT

number of
selected records

0 upon failure

no record met WHERE condition

SELECT … INTO
1 upon success

0 upon failure
no record met WHERE condition

INSERT … SELECT

number of inserted
records

–1 if no record
meets WHERE
condition

no record met WHERE condition

there were selected records, but none was
inserted (generally due to unique key constraint or
insufficient privileges)

INSERT_VALUES
1 upon success

0 upon failure
failed to insert

UPDATE … WHERE
CURRENT OF
cursor_name

1 upon success

0 upon failure

cursor is not open

no more records in cursor

there is a record, but it was not updated

Return Values and Statement Failure PDF last generated: Dec 10, 2024

Priority SDK Page 59

Command Return Values Failure When…

UPDATE

number of updated
records

0 upon failure to
update

–1 if no record
meets WHERE
condition

no record met WHERE condition

there were selected records, but none was
updated (generally due to unique key constraint or
insufficient privileges)

DELETE … WHERE
CURRENT OF
cursor_name

1 upon success

0 upon failure

cursor is not open

no more records in cursor

there is a record, but it was not deleted

DELETE

number of deleted
records

0 upon failure to
delete

–1 if no record
meets WHERE
condition

no record met WHERE condition

there were selected records, but none was
deleted (generally due to unique key constraint or
insufficient privileges)

RUN
returns what the
query returns

ENV
1 upon success

0 upon failure

EXECUTE
PID of the child
process

LINK

2 if new file has
been created

1 if link to existing
file

0 upon failure to
link

–1 if more than
one link to same
table name

UNLINK
1 upon success

Return Values and Statement Failure PDF last generated: Dec 10, 2024

Priority SDK Page 60

Command Return Values Failure When…
0 upon failure

GOTO no such label found forwards

LOOP no such label found backwards

LABEL never

END never

Return Values and Statement Failure PDF last generated: Dec 10, 2024

Priority SDK Page 61

Non-standard Scalar Expressions

Introduction

In addition to standard SQL scalar expressions, Priority also recognizes several other
expressions. These are described below. Moreover, it offers support of bitwise operations on
integers.

Note: To test the SELECT statements below, you can record them in the window of the SQL
Development Program, as follows, and then execute them, using the SQL Interpreter. See
Executing SQL Statements.

Conditional Expression

See Syntax Conventions.

Following C language, Priority uses the symbols ? : to designate a conditional expression (if
... then ... else ...). The syntax of a conditional expression is:

(*expression* **?** *expression* **:** *expression*)

If the first expression yields a True value, then the second will determine the resulting value.
If not, then the third expression will determine that value.

Example: A conditional expression could be used for a calculated column in the
ORDERSBYCUST report which warns that the order is overdue:

(SQL.DATE8 ORDERITEMS.DUEDATE AND ORDERITEMS.BALANCE 0 ? ’*’ : ’ ’)

That is, if the current date is later than the due date and the balance to be delivered is
greater than 0, then display an asterisk; otherwise, leave blank.

Numbers

Mathmatical Expressions

ROUND(m)

rounds m (a real number) to the nearest integer and treats it as an integer\

SELECT ROUND(1.45) FROM DUMMY FORMAT; /* 1 */

ROUNDR(m)

rounds m (a real number) to the nearest integer but treats it as a real number

SELECT ROUNDR(1.45) FROM DUMMY FORMAT; /* 1.000000 */

EXP(m, n)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 62

treats n as an exponent of m. Both numbers must be integers (type INT).

SELECT EXP(3,2) FROM DUMMY FORMAT; /* 9 */
SELECT EXP(2,3) FROM DUMMY FORMAT; /* 8 */

POW(m, n) – treats n as an exponent of m (m and n must be of type REAL).

SELECT POW(3.1,-2.4) FROM DUMMY FORMAT; /* 0.066181 */

SQRT(m)

returns the square root of m rounded to the nearest integer, where m is an integer

SELECT SQRT(10) FROM DUMMY FORMAT; /* 3 */

SQRTR(m)

returns the square root of m , where m is a real number

SELECT SQRTR(10.0) FROM DUMMY FORMAT; /* 3.162278 */

ABS(m)

returns the absolute value of m , where m is an integer

SELECT ABS(-5) FROM DUMMY FORMAT; /* 5 */

ABSR(m)

returns the absolute value of m , where m is a real number

SELECT ABSR(-5.3) FROM DUMMY FORMAT; /* 5.300000 */

n MOD m

calculates modular arithmetic

SELECT 10 MOD 4 FROM DUMMY FORMAT; /* 2 */

You can also use the MOD function to retrieve the time from a DATE 14 variable:

SELECT 17/05/09 12:25 MOD 24:00 FROM DUMMY FORMAT;/* 12:25 */

Comparisons

MINOP(m, n)

returns the minimum value between two numbers

SELECT MINOP(1.5,2) FROM DUMMY FORMAT; /* 1.500000 */

MAXOP(m, n)

returns the maximum value between two numbers

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 63

SELECT MAXOP(1.5,2) FROM DUMMY FORMAT; /* 2.000000 */

Conversions

REALQUANT(m)

inputs a shifted integer and translates it to a real number, where the number of places that
the decimal point is moved is determined by the value of the DECIMAL system constant
(usually, 3). Used in reports to define a calculated column that, for example, displays
Quantity x Price, when Quantity is a shifted integer and Price is a real number.

:ORDERITEMS.TQUANT = 1000;
SELECT REALQUANT(:ORDERITEMS.TQUANT) FROM DUMMY FORMAT;

/* 1.000000 assuming the Decimal constant = 3 */

INTQUANT(m)

inputs a real number and translates it to a shifted integer, where the number of places that
the decimal point is moved is determined by the DECIMAL system constant. Used in the
form interface (Form Load Designer) when the load table is GENERALLOAD, and you want
to use one of the table columns for quantity as a shifted integer.

SELECT INTQUANT(1.0) FROM DUMMY FORMAT;
/* 1000 assuming the Decimal constant = 3 */

ITOH(m)

returns the hexadecimal value of m , where m is an integer

SELECT ITOH(10) FROM DUMMY FORMAT; /* a */

HTOI(STRING ‘M’)

inputs a hexadecimal value and translates it to its corresponding integer

SELECT HTOI('2f4') FROM DUMMY FORMAT; /* 756 */

Strings

Conversions

ITOA(m, n)

outputs m as a string having n characters, where both values are integers (leading zeroes
are added where necessary)

Note: If no n is specified, or if the value of n is less than what is needed, the minimum
required width will be used.

SELECT ITOA(35,4) FROM DUMMY FORMAT;/* \'0035\' */
SELECT ITOA(35) FROM DUMMY FORMAT;/* \'35\' */

ATOI(string)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 64

outputs the designated string as an integer (maximum length of 10 characters)

SELECT ATOI('35') FROM DUMMY FORMAT;/* 35 */

ATOR(string)

outputs the designated string as a real number(maximum length of 14 characters)

SELECT ATOR('109012.99') FROM DUMMY FORMAT;/* 109012.990000 */

RTOA(m, n, USECOMMA)

outputs m (a real number) as a string, displaying n decimal places according to the decimal
format for the current language

USECOMMA will add a thousands separator to the output, based on the current language.

SELECT RTOA(150654.665,2,USECOMMA) FROM DUMMY FORMAT; /*
'150.654,67' assuming decimal format is 1.234,56 */

SELECT RTOA(150654.665,2) FROM DUMMY FORMAT; /*
'150654.67' assuming decimal format is 1,234.56 */

SELECT RTOA(3.665432,2) FROM DUMMY FORMAT; /* '3.67\' */

String Information

STRLEN(string)

outputs the length of the string (an integer)

SELECT STRLEN('Priority') FROM DUMMY FORMAT;/* 8 */

ISALPHA(string)

indicates whether a given string begins with a letter and is comprised solely of: uppercase
and lowercase letters, digits, and/or _ (underline); yields 1 if it is, 0 if it is not

SELECT ISALPHA('Priority_21') FROM DUMMY FORMAT; /* 1 */
SELECT ISALPHA('21Priority') FROM DUMMY FORMAT; /* 0 */

ISPREFIX(string1, string2)

indicates whether the first string is the prefix appearing in the second string

SELECT ISPREFIX('HEEE','HEEE_ORDERS') FROM DUMMY FORMAT; /* 1 */
SELECT ISPREFIX('HEEWE','HEEE_ORDERS') FROM DUMMY FORMAT; /* 0 */

ISNUMERIC(string)

indicates whether a given string is comprised solely of digits; yields 1 if it is, 0 if it is not.
Useful when you wish to ensure that a given column of CHAR type is made up only of digits
(i.e., a zip code)

Note: You would not use INT type in this case, because you do not want the value to be

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 65

treated like a number (i.e., you want the zip code to appear as 07666 and not as 7,666).

SELECT ISNUMERIC('07666') FROM DUMMY FORMAT; /* 1 */
SELECT ISNUMERIC('14.5') FROM DUMMY FORMAT; /* 0 */

ISFLOAT(string)

indicates whether a given string is a real number; yields 1 if it is, 0 if it is not

SELECT ISFLOAT('14.5') FROM DUMMY FORMAT; /* 1 */

STRINDEX(full_string, search_string, index)

returns the index location of a search string within the full string. The search starts from the
specified index position. Returns a value of 0 if the search string was not found, or the
provided index position is larger than the length of the full string.
Specify an index of -1 to reverse the search, starting from the last index position of the full
string.

:STR = 'hello world this is my string';
:SUBSTR = 'is';
:INDEX = 1;
SELECT :STR, :SUBSTR, :INDEX,
STRINDEX(:STR, :SUBSTR, :INDEX) FROM DUMMY FORMAT; /* Result = 15*/

:INDEX = -1;
SELECT :STR, :SUBSTR, :INDEX,
STRINDEX(:STR, :SUBSTR, :INDEX) FROM DUMMY FORMAT; /* Result = 18*/

This expression can also be used in queries. For example:

:FDT = BEGINOFYEAR(SQL.DATE);
SELECT CUSTNAME, CUSTDES, CREATEDDATE
FROM CUSTOMERS
WHERE CREATEDDATE > :FDT
AND STRINDEX(CUSTNAME, '073', 1) > 0
FORMAT;

String Manipulation

STRCAT(string1, string2, ...)

outputs the concatenation of given strings\

Note:The length of the resulting concatenation is limited to 127 characters.

SELECT STRCAT('abc','ba') FROM DUMMY FORMAT;/* 'abcba' */

STRIND(string, m, n)

beginning from the m th position in a given string, retrieves n characters

SELECT STRIND('Priority',3,2) FROM DUMMY FORMAT;/* 'io' */

SUBSTR(string, m, n)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 66

beginning from the m th position in a given string, retrieves n characters, whether m and n
are variables or fixed values

:STR = 'Priority';
:I = 3;
:T = 2;
SELECT SUBSTR(:STR, :I, :T) FROM DUMMY FORMAT; /* 'io' */
SELECT SUBSTR('Priority',3,2) FROM DUMMY FORMAT;/* 'io' */

RSTRIND(string, m, n)

same as STRIND, except that the string is read from right to left

SELECT RSTRIND('Priority',3,2) FROM DUMMY FORMAT; /* 'ri' */

Note: STRIND and RSTRIND behave differently when run on a variable within a SELECT
statement from a real table, which can be confusing. As such, we recommend you always
use SUBSTR and RSUBSTR instead.

RSUBSTR(string, m, n):

same as SUBSTR, except that the string is read from right to left

:STR = 'Priority';
:I = 3;
:T = 2;
SELECT RSUBSTR(:STR, :I, :T) FROM DUMMY FORMAT; /*'ri' */
SELECT RSUBSTR('Priority',3,2) FROM DUMMY FORMAT;/* 'ri' */

STRPREFIX(string, n)

retrieves the first n characters of the string, where n is a fixed value

SELECT STRPREFIX('Priority',2) FROM DUMMY FORMAT; /* 'Pr' */

STRPIECE(string, delimiter, m, n)

for a given input string and delimiter (which breaks up the string into parts), retrieves n parts,
beginning from the m th part\

Note: The string and parameters m and n may be variables, but the delimiter must be a fixed
value. The delimiter must be a single character long.

SELECT STRPIECE('a/b.c.d/e.f','.',2,1) FROM DUMMY FORMAT;
/* 'c' */
SELECT STRPIECE('a/b.c.d/e.f','/',2,1) FROM DUMMY FORMAT;
/*'b.c.d' */
SELECT STRPIECE('a/b.c.d/e.f','.',1,3) FROM DUMMY FORMAT;
/* 'a/b.c.d/e' */
SELECT STRPIECE('a/b.c.d/e.f','/',1,3) FROM DUMMY FORMAT;
/* 'a/b.c.d/e.f' */

TOUPPER(string)

changes characters to uppercase letters

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 67

:LOW = 'marianne';SELECT TOUPPER(:LOW) FROM DUMMY FORMAT;
/*MARIANNE */

TOLOWER(string)

changes characters to lowercase letters

:UPPER = 'MARIANNE';SELECT TOLOWER(:UPPER) FROM DUMMY FORMAT;
/*marianne */

Files and Messages

ENTMESSAGE(entity_name, entity_type, message_number)

returns the message for message_number of entity entity_name with type entity_type.

ENTMESSAGE should only be run against the DUMMY table. If you need to use it in a
statement that includes a database table, store it in a variable first.

SELECT ENTMESSAGE('ORDERS','F',3) FROM DUMMY FORMAT;
/* You cannot revise the number of an itemized order. */

/* In practice, it's more useful to directly assign
the message to a variable */
:MSG = ENTMESSAGE('ORDERS','F',3);

SYSPATH (folder type [one of BIN, PREP, LOAD, MAIL, SYS, TMP, SYNC, IMAGE], path
output type: 1 for relative, or 0 for absolute)

returns the the path for a given system folder

SELECT SYSPATH('MAIL', 1) FROM DUMMY; /*../../system/mail */
SELECT SYSPATH('MAIL', 0) FROM DUMMY; /* P:/system/mail/ */

Notes:

• In the Windows environment, the TMP folder location can change between users.
• system/Sync is a special folder in the public cloud only. It has special caveats

regarding its use.

NEWATTACH(‘filename’, [‘extension’])

22.0

Creates a valid file location in the system/mail folder and returns it. While extension is
optional, it is recommended that you add it. Note that the extension parameter should
contain the dot as part of the string (‘.zip’ and not ‘zip’).

The function can handle conflicts with existing files (by adding a number suffix to the
filename).

This function is useful when you are working in the Web interface and need to prepare a file
on the server in the system/mail folder, which is accessible to users (unlike the temporary
folder where files are usually created). You can also use it to create a valid folder name to
which to move files you previously created.

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 68

If your filename and extension are a single string (e.g. after being uploaded in a procedure),
you can use STRPIECE with a . delimiter to split the extension and file.

The function can be incorporated into SQL statements and use computed values, but only
those that can be computed before the query is sent to the database (i.e., you cannot use
the values in table columns as part of the computation).

Keep in mind that the filename will be changed to lowercase, as can be seen in the example.

22.1

In version 22.1, the function will also create the folder on the server (instead of just providing
a valid location).

:z = NEWATTACH('LOGFILe', '.zip');
SELECT :z FROM DUMMY FORMAT;
/*../../system/mail/202202/1t2tymq0/logfile.m */
SELECT NEWATTACH('LOGFILe', '.zip') FROM DUMMY FORMAT;
SELECT NEWATTACH('C:\TMP\LOGFILe', '.zip') FROM DUMMY FORMAT;
SELECT NEWATTACH('C:\TMP\LOGFILe.zip') FROM CUSTOMERS WHERE CUST = 0 FORMAT;

Dates

Dates, times and days are stored in the database as integers. Dates may be represented to
the user in American (MMDDYY) or European (DDMMYY) format, depending on the type
assigned to the language being used (in the Languages form: System Management →
Dictionaries → Translation).

The following examples are in American date format.

Date Parsing

DAY(date)

yields the number of the weekday on which the specified date falls (where Sun=1, Mon=2,
etc.).

SELECT DAY(03/22/06) FROM DUMMY FORMAT;/* 4 */

Note: This number can then be translated into the name of the weekday by means of the
DAYS table (for the application's base language of English) and the LANGDAYS table (for
any additional languages). These tables store the names of all days in the week in what ever
language you are using.

MDAY(date)

yields the number of the day in the month

SELECT MDAY(03/22/06) FROM DUMMY FORMAT;/* 22 */

WEEK(date)

yields an integer comprised of the year (last one or two digits of the year) and the number of
the week in the year (two digits, between 01 and 53)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 69

SELECT WEEK(03/22/06) FROM DUMMY FORMAT;/* 612 */

WEEK6(date)

yields an integer comprised of the year in 4 digits and the number of the week in the year
(two digits, between 01 and 53)

SELECT WEEK6(03/22/06) FROM DUMMY FORMAT;/* 200612 */

MWEEK(week)

given a value for week (the last two digits of a year and the number of a week in that year),
yields the number of the month in which that week falls

SELECT MWEEK(0612) FROM DUMMY FORMAT;/* 3 */

MONTH(date)

yields the number of the month in the year

SELECT MONTH(03/22/06) FROM DUMMY FORMAT;/* 3 */

QUARTER(date)

yields a string comprised of the annual quarter in which the date falls followed by the four
digits of the year

SELECT QUARTER(09/22/06) FROM DUMMY FORMAT;/* 3Q-2006 */

YEAR(date)

yields an integer comprised of the four digits of the year

SELECT YEAR(03/22/06) FROM DUMMY FORMAT;/* 2006 */

TIMELOCAL(date)

yields the number of seconds from January 1, 1970, to the specified date

SELECT TIMELOCAL(05/04/06) FROM DUMMY FORMAT;/* 1146693600 */

CTIME(int)

yields the date corresponding to the given number of seconds since January 1, 1970 02:00

SELECT CTIME(1146693600) FROM DUMMY FORMAT;/* Thu May 04 01:00:00
2006 */

Calculated Dates

BEGINOFWEEK(date in format YYWW)

SELECT BEGINOFWEEK(2220) FROM DUMMY FORMAT; /* 15/05/22 */

BEGINOFMONTH(date)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 70

yields the date of the first day of the month

SELECT BEGINOFMONTH(05/04/06) FROM DUMMY FORMAT;/* 05/01/06 */

BEGINOFQUARTER(date)

yields the date of the first day of the quarter

SELECT BEGINOFQUARTER(05/04/06) FROM DUMMY FORMAT;/* 04/01/06 */

BEGINOFHALF(date)

yields the date of the first day of the six-month period (half a year) in which the date falls

SELECT BEGINOFHALF(10/22/06) FROM DUMMY FORMAT;/* 07/01/06 */

BEGINOFYEAR(date)

yields the date of the first day of the year

SELECT BEGINOFYEAR(10/22/06) FROM DUMMY FORMAT;/* 01/01/06 */

ENDOFMONTH(date)

yields the date of the end of the month

SELECT ENDOFMONTH(04/22/06) FROM DUMMY FORMAT; /* 04/30/06 */

ENDOFQUARTER(date)

yields the date of the end of the quarter

SELECT ENDOFQUARTER(03/22/06) FROM DUMMY FORMAT; /* 03/31/06 */

ENDOFHALF(date)

yields the date of the end of the half-year

SELECT ENDOFHALF(03/22/06) FROM DUMMY FORMAT;/* 06/30/06 */

ENDOFYEAR(date)

yields the date of the end of the year

SELECT ENDOFYEAR(03/22/06) FROM DUMMY FORMAT;/* 12/31/06 */

Date Conversion

ATOD(date, pattern)

converts dates, times and days into internal numbers (mainly used to import external data).
See ATOD and DTOA.

DTOA(date, pattern)

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 71

converts dates, times and days in the system to ASCII (mainly used to print out or display
data to the user). See ATOD and DTOA.

Non-standard Scalar Expressions PDF last generated: Dec 10, 2024

Priority SDK Page 72

ATOD and DTOA

Syntax

ATOD(date, pattern)

converts dates, times and days into internal numbers (mainly used to import external data)

DTOA(date, pattern)

converts dates, times and days in the system to ASCII (mainly used to print out or display
data to the user)

Pattern Components for ATOD and DTOA
Expressions

The following pattern components can be included in ATOD and DTOA expressions (those
marked with an asterisk (*) only apply to DTOA). Of course, more than one component can
be used in the same expression.

Note: You can add punctuation marks (e.g., dashes, slashes, commas) and spaces between
pattern components as desired.

MMM or mmm— abbreviated form (first three letters) of month name (Jan)

MMMM or mmmm — full name of the month (January)

MONTH — abbreviated form of month name and the last two digits of the year (Jun-06)

MM — number of the month (01)

DD — date in the month (15)

YY — last two digits of year (06)

YYYY — all four digits of year (2006)

day — weekday (Mon)

hh:mm — hours and minutes (12:05)

XX/XX/XX — date with two-digit year, displayed in American or European format, depending
on the language type defined in the Languages form.

XX/XX/XXXX — date with four-digit year, displayed in American or European format,
depending on the language type defined in the Languages form.

ATOD and DTOA PDF last generated: Dec 10, 2024

Priority SDK Page 73

FULLDATE — the month name (abbreviated form), date and four-digit year

WW — 23.0 week in the year (03).
Note: This is similar to the WEEK function, however, the WEEK function returns both the
year and week (0603).

Converting a String to a Date: Examples

SELECT ATOD('06/21/06','MM/DD/YY') FROM DUMMY FORMAT; /* 06/21/06
(June 21, 2006, in American format) */

SELECT ATOD('06/21/2006','MM/DD/YYYY') FROM DUMMY FORMAT; /*
06/21/06 (June 21, 2006, in American format) */

SELECT ATOD('062106','MMDDYY') FROM DUMMY FORMAT; /* 06/21/06
(June 21, 2006, in American format) */

SELECT ATOD('311006','DDMMYY') FROM DUMMY FORMAT; /* 31/10/06
(October 31, 2006, in European format) */

SELECT ATOD('31102006','DDMMYYYY') FROM DUMMY FORMAT; /* 31/10/06
(October 31, 2006, in European format) */

Converting a Date to a String: Examples

Unless otherwise stated, examples are in American date format.

:DATE = 06/01/06; /* June 1, 2006 */
SELECT DTOA(:DATE,'MMMM') FROM DUMMY FORMAT; /* June */
SELECT DTOA(:DATE,'MMM') FROM DUMMY FORMAT; /* Jun */
SELECT DTOA(:DATE,'MM') FROM DUMMY FORMAT; /* 06 */
SELECT DTOA(:DATE,'MONTH') FROM DUMMY FORMAT; /* Jun-06 */
SELECT DTOA(:DATE,'day') FROM DUMMY FORMAT; /* Thu */
SELECT DTOA(06/01/06,'XX/XX/XX') FROM DUMMY FORMAT; /* 06/01/06
(June 1, 2006, in American format;
January 6, 2006, in European) */

SELECT DTOA(:DATE,'FULLDATE') AS 'FULLDATE' FROM DUMMY FORMAT;
/* Jun 01,2006 */

:DATE = 06/01/06 12:33;
SELECT DTOA(:DATE,'MM/DD/YY hh:mm,day') FROM DUMMY FORMAT;
/* 06/01/06 12:33,Thu */

SELECT DTOA(:DATE,'MMM-YY') FROM DUMMY FORMAT; /* Jun-06 */
SELECT DTOA(:DATE,'MMMM-YYYY') FROM DUMMY FORMAT;/* June-2006 */
SELECT DTOA(:DATE, 'The current date is MM-DD-YY,
and the time is hh:mm.') FROM DUMMY FORMAT;

ATOD and DTOA PDF last generated: Dec 10, 2024

Priority SDK Page 74

Forms

Introduction

Forms are constructed and modified in the Form Generator form and its sub-levels (System
Management → Generators → Forms). They serve a variety of purposes:

• They insert records into the database.
• They retrieve records from the database.
• They allow for the updating of retrieved records.

All three functions can be simultaneously served by the very same form. Moreover, you can
construct a read-only query form in virtually the same manner that you design an updateable
form.

Forms can be seen as windows into specific database tables. In this context, there are two
types of tables: the form’s base table and its join tables. Each form is derived from a single
base table. Data stored in any columns of that table can be viewed and modified in the form.
Moreover, new entries in the form will add records to the base table. In contrast, join tables
contain imported data — i.e., data that can be displayed in the form, but not modified there.
A given form can display data from several different tables; therefore, it can have any
number of join tables.

A form is characterized by:

• a unique name
• a title
• a base table
• a set of form columns derived from the columns of the base table
• additional form columns imported from other tables
• calculated columns whose values are determined by other columns; their values are

not stored in any table
• a set of triggers, which execute commands during form use.

To open a new form and record its attributes, use the appropriate columns in the Form
Generator.

Form Name

The form name is a short name by which the form is identified by the system. As this name is
used in SQL variables in form triggers, there are certain restrictions (which also apply to form
column names):

• Only alphanumeric values (upper- and lower-case letters and digits) and the
underscore may be used (no spaces).

• The name must begin with a letter.
• You may not used a reserved word. A list of reserved words is available in the

Reserved Words form (System Management → Dictionaries).
• The name assigned to any newly created forms must begin with a common four-

letter prefix. This should be the same for all entities added to the customer’s Priority

Forms PDF last generated: Dec 10, 2024

Priority SDK Page 75

installation (e.g., ACME_ORDERS).

Notes:

• It is advisable to assign the form the same name as its base table.

• Because SQL variables are based on the form name, any changes in the name
must be accompanied by changes in the appropriate SQL statements.

Form Title

The form title is the means of identifying the form in the user interface. The designated title
will appear in menus and at the top of the form when it appears on screen. Changes in form
titles do not affect triggers in any way.

Base Table

Each form is derived from a single table, known as its base table. The form serves two
interrelated purposes. First, it acts as a window into the table, displaying the data stored
there. Second, it updates the base table whenever records are added to, deleted from or
revised in the form. The form inherits its columns (including their names, widths, titles and
types) from the base table.

Note: When creating a new form, you should also create a new base table for it (see Tables).

Application

Each form is assigned an application, which is used to classify forms by the type of data they
access (e.g., FNC for the Financials module). When creating a new form, specify a code
word that aids in retrieval.

Note: The application code can be used to define a target form to be reached from a given
form column.

Module

Each form belongs to a given Priority module. As different modules are included in each
type of Priority package, users are restricted to those forms whose modules that have
purchased. When creating a new form, specify “Internal Development.” This way you (and
your customers) will be able to use your own forms no matter which modules of Priority
have been purchased.

Forms PDF last generated: Dec 10, 2024

Priority SDK Page 76

Query Forms

A query form is one in which the user is not permitted to add, modify or delete records. Such
a form is meant solely to display information retrieved from the database.

Example: Warehouse Balances (WARHSBAL) is a query form the displays
balances per part for the warehouse in question, calculated automatically on the
basis of recorded warehouse transactions.

It is not necessary to flag any of the columns in a query form as read-only. In fact, it is
advisable to make the columns in the unique key updateable for the user’s convenience.
Tip: To create a form in which records cannot be inserted or updated, but deletions are
allowed, assign read-only status to all the form’s columns.

Blocking Record Deletion

Sometimes you wish to restrict user operations in a given form to inserts and updates,
disallowing record deletions.

Example: Forms in which constants are defined do not allow for record deletion.

Blocking Definition of a Multi-Company Form

To prevent users from defining a given form as a multi-company form, specify x in the One-
to-many column.

When Creating a New Form

When you are designing your own form, once the above attributes have been designated,
the form may be prepared as an executable file and loaded on screen, and values may be
filled in its columns. All built-in triggers will be activated.
The result, of course, will be very rough. All columns (including internal numbers) will be
displayed and updateable. Form column position, which determines the order of form column
display, will be based on the order in which columns were assigned to the table. Thus, it is
likely that you will want to make modifications. And you will probably wish to import data from
other tables. In addition, you will sometimes need to establish one-to-many relationships
(between an upper-level form and its sub-levels). Finally, you may wish to create your own
triggers.

Form Capacities

The following list provides the maximum number of various properties of forms:

• Form columns - 600
• Actions - 100
• Sub-level forms - 100
• Drilldown (zoom) depth - 10 forms
• Auto-refresh of upper-level forms when updating a sub-level - up to 10 form levels

above the current form.
• Sort columns - 10

Forms PDF last generated: Dec 10, 2024

Priority SDK Page 77

• Tables participating in form - 78

The system can prepare up to 25000 forms simultaneously.

Forms PDF last generated: Dec 10, 2024

Priority SDK Page 78

Form Columns

Introduction

To record attributes for form columns, use the appropriate columns in the Form Columns
sublevel form of the Form Generator.

Column Names and Titles

The form column name serves to identify the form column in the system and is used mainly
in SQL variables in form triggers. Consequently, it is subject to certain restrictions (which
also apply to form names):

• Only alphanumeric values (uppercase and lowercase letters and digits) and the
underline sign may be used (no spaces).

• The column name must begin with a letter.
• You may not use a reserved word.
• Any new column must begin with the appropriate four-letter prefix.
• There can be no more than 600 columns in a form.

Any change in the form column’s name will require appropriate changes in SQL variables
which refer to that column. The designated name can be identical to the name of the table
column from which the form column is derived. However, two different form columns which
are derived from the same table column must be given different names.

Example: The Warehouse Transfer form (DOCUMENTS_T) refers to two different
warehouses (sending warehouse and receiving warehouse). Though they are both
derived from the same table column (WARHSNAME), they must have different
form column names. Hence, the form column referring to the sending warehouse is
WARHSNAME, while that referring to the receiving warehouse is
TOWARHSNAME.

The form column title is utilized in the user interface. That is, it appears as a column heading
in the form itself. The title is automatically inherited from the relevant table column. It may,
however, be revised (even translated into another language). Moreover, when a form has a
default design, the title assigned in the default design is displayed instead.

Example: In the DOCUMENTS_T form, both WARHSNAME and
TOWARHSNAME inherit the title Warehouse Number from their common table
column. To distinguish between them in the form, their titles have been changed to
Sending Warehouse and Receiving Warehouse, respectively.

Order of Column Display

The order in which columns appear in the form is determined by their relative position (an
integer). Integers determining column position need not be consecutive. The column
assigned the lowest integer appears first, that with the next highest integer appears second,
and so on.

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 79

Obviously, it is unnecessary to be concerned with the position of hidden columns (see
below). Nonetheless, it is helpful to move these columns out of the way, by assigning them
all the same high integer (e.g., 99).

Notes:

• Positions have no effect on screen-painted forms; the designer can place each
column wherever desired.

• Users can apply form design (Organize Fields) to affect how columns are displayed
specifically for them.

Hidden Columns

Not all form columns ought to be displayed. For instance, there is generally no reason to
display the internal number of the table’s autounique key. You should also hide the internal
numbers through which data are imported from other tables.

Example: ORD and CUST are internal columns hidden from the ORDERS form

The Order Items form (ORDERITEMS) exemplifies two other instances in which data are not
displayed. In addition to the PART column (through which data are imported from the PART
table), the ORD and LINE columns are hidden. The former is used to link the form to its
upper-level (ORDERS), establishing a one-to-many relationship. The latter is used to sort the
order items (during data retrieval) according to the order in which they were originally
specified; its value is determined by a trigger. Neither of these columns need to be displayed
in the form.
Tip: Have the system manager use the Organize Fields utility to hide columns from
individual users.

Mandatory Columns

Some of the displayed columns in the form must be filled in; others are optional. For
instance, the user is required to indicate the date of each sales order, whereas specification
of a price quotation is optional. Similarly, the user cannot place an order without specifying a
customer number, but a sales rep number would not be necessary. Therefore, the
CURDATE and CUSTNAME columns are mandatory. When a column is mandatory, built-in
triggers will not allow the user to leave the line without specifying data for this column.

Note: Whenever a form load interface is used to update a form, that interface must fill in all
mandatory columns. If it does not, the INTERFACE program will fail.

The columns that make up the base table’s unique key are a special case: they must always
contain data (either filled in automatically by the system or manually by the user), regardless
of whether they are flagged as mandatory. If data are missing from any of these columns, the
record will be incomplete and the built-in triggers will not allow the user to leave the line. It is
therefore recommended that, when the user is supposed to fill in the needed data, you flag
the column(s) in question as mandatory. In this way, users will know in advance that data
must be designated here. Otherwise, they will not find out until they try to leave the line and
receive an error message.

Note: The Privilege Explorer can be used to make columns mandatory for specific users.
You can find more info on the Privilege Explorer in Priority Xpert.

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 80

Read-only Columns

Not all displayed form columns should be updatable. Usually, columns whose values are
determined automatically (generally by a trigger) should be read-only. For instance, the
QPRICE column of the ORDERS form is determined by the sum of the prices of its order
items (as designated in the sublevel ORDERITEMS form). Another example is the
AGENTDES column. Owing to built-in fill triggers, the sales rep name is filled in
automatically once the sales rep number is specified in the ORDERS form. This is because
(1) the rep’s name is imported from the AGENTS table, and (2) the rep’s number
(AGENTCODE) is a unique key in that table.

Notes:

• If you want the entire form to be read-only, you can make it a query form, thereby
blocking all record insertions, updates and deletions.

• The Privilege Explorer can be used to make updateable columns read-only for
specific users. You can find more info on the Privilege Explorer in Priority Xpert.

Balances: Special Read-only Columns

Priority offers the option of a balance column — a special read-only column that displays
financial balances. In order to distinguish between credit and debit balances, one is
displayed within parentheses while the other appears in regular format. By default, it is the
debit balances that are displayed in parentheses, both in forms and in reports. If you want
credit balances to be displayed that way instead, use the CREDITBAL system constant. First
add it to the SYSCONST table using an INSERT statement and then assign it a value of 1.

You can also display a cumulative balance in a form. To do so, add two columns to the
form:

• A balance column — Specify B in the Read/Mandatory/Bal column. This must be a
numerical column (INT or REAL); its value will be added to the cumulative balance
column.

• A cumulative balance column — Specify A in the Read/Mandatory/Bal column. In
the Form Column Extension form, record the type (INT or REAL), and in the
Expression/Condition column, record 0 or 0.0, respectively.

In addition, you can include an opening balance column, if you want cumulative balance
calculations to start from something other than

1. In that case, specify C in the Read/Mandatory/Bal column.

Example: See the BAL_BASE, BAL and OPENNBAL columns in the
ACCFNCITEMS form.

Boolean Columns

In order for a form column to be defined as Boolean, it must be of CHAR type and have a
width of 1. When a Boolean column is flagged, the value of that field in the table is Y; when it
is blank, the value in the table is ‘\0’. Users see a box which they can flag or leave empty
(just like the one you use to define Boolean columns).

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 81

Keyword Columns

You can add additional functionality to columns by using a keyword in the name of the
column.

Attachment Columns

Priority offers the option of an attachment column — a special form column that is used to
attach a file to the current record. Such columns are displayed together with a paper clip
icon, which can be used to open the Windows Explorer and navigate to the file in question.
Alternatively, users can record the file path manually. An example of this type of column is
the File Name column of the Customer Documents for Task form, a sublevel of the Tasks
form. In order for a form column to be defined as an attachment column, it must be of CHAR
type and the form column name must contain the string EXTFILENAME (e.g., PRIV_
EXTFILENAME).

When working with attachments, files are uploaded to the system/mail folder on the server,
and can be interacted with by the user. Only files in system/mail can be interacted with; If
you specify a path to a different folder on the server, even if it is valid (such as the system/
load folder), the user will not be able to interact with the file.

URL Columns

You can define form columns as URLs. These columns have a special interaction to open a
browser window and navigate to the specified URL (appears as a globe icon next to the
column).

To set a column as a URL column, it must contain the string HOSTNAME in its name, e.g.
PRIV_HOSTNAME. For an example, see the HOSTNAME column in the CUSTOMERS
form.

EMail Columns

Form columns can be defined as email columns. These columns have a special interaction
to send an email (envelope icon).

To set a column as an email column, it most contain the string EMAIL in its name, e.g.
PRIV_EMAIL. For an example, see the Email column in the CUSTOMERS form.

Address Columns

Another option is to allow users to open Google Maps from within a form. For example, by
selecting Map (in the Windows interface, from Tools in the top menu; in the web interface,
from Run) from the address column in the Customers form, the user can open Google Maps
to see the customer’s location. In order for a form to have the option of opening a map, it
must contain a special column named ADDRESSMAP. You can add this column to a
customized form using your standard prefix (XXXX_ADDRESSMAP).

Notes:

• It is not possible to add such a column to a standard form.
• Working with Google Maps requires an API key.

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 82

Special Date Columns

As mentioned earlier, dates are stored in Priority as integers, which correspond to the
number of minutes elapsed since Jan. 1, 1988 (for example, Dec. 31, 1987 = -1440). Hence,
the date 01/01/1988 is stored as “0”. Since Priority forms do not generally display zero
values, this date is not displayed in form columns. If you want the value 01/01/1988 to be
displayed in a particular column, the form column name must contain the string BIRTHDATE
(e.g., the BIRTHDATE10 column in the USERSB_ONE form).

Note: When a new record is inserted into the database and the date column is empty, the
system assigns a default value of 0 (i.e., 01/01/1988). If you use the above technique to
display the date 01/01/1988, this value will appear in the date column of all such records. In
this case, you may want to define another trigger, such that when a new record is inserted
into the database and the date column in question is empty, the column receives a different
default value (e.g., 01/01/1900).

Sorting Data

Priority allows you to control the default order of records appearing in a given form. That is,
you may assign sort priorities to one or more columns, and you may designate the type of
sort. A given form column’s sort priority (an integer) determines how records are sorted on
screen. The lower the integer assigned to a given column, the higher its priority in a sort. In
addition to sort priority, you can also indicate the type of sort. There are four options:

• ascending (the default sort)
• descending
• alphanumeric ascending
• alphanumeric descending.

An alphanumeric sort operates strictly according to the ASCII table. Thus, A13 will come
before A2 and B200 will precede B39 (in ascending order). In contrast, the regular sort treats
consecutive digits as a number (rather than individual characters). Hence, in ascending
order, A2 precedes A13 and B39 precedes B200.

Note: The designated sort priority and type constitute the default sort. A different sort order
may be imposed by the user during data retrieval (see the User Interface Guide).

Imported Data

In addition to the columns derived from its base table, a form can also display information
that is stored in another table. This table is known as a join table. A form can have several
join tables from which it imports data.

Example: The ORDERS form imports data from several tables, among them
CUSTOMERS and AGENTS. Thus, the customer number and the sales rep
(among other things) have been added to the form.

To add a column, specify a form column name, abiding by the above-mentioned restrictions
(e.g., XXXX_CUSTNAME). The table to which that column belongs (e.g., CUSTOMERS) will
be filled in automatically, unless the same column name appears in more than one table. In
that case, designate the table name yourself. Next, assign the new form column a position.
Finally, flag the imported columns as read-only or mandatory where desired. In general, all

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 83

imported columns except for those belonging to the join table’s unique key should be read-
only, as their values are automatically filled in by built-in fill triggers.

There is one exception to the above: when the data imported from another table is updated
in the form. In such a case, you do not specify a column name (or table name) in this form,
nor do you designate a join column and join table (see below). Instead you need to use the
Form Column Extension sub-level form, in a similar manner as you record calculated
columns. For more details, see Calculated Columns.

Example: See the STARTDATE column in the Service Calls form
(DOCUMENTS_Q).

Join Columns

The customer who places a given order is stored in the ORDERS table solely by means of
the internal customer number (CUST). This internal number is derived from the CUST
column in the CUSTOMERS table.

When an order is recorded in the Sales Orders form, the number of the customer who placed
that order must be specified as well. '’Priority’’ then uses that number to obtain the
customer’s internal number. The internal number is then stored in the appropriate record in
the ORDERS table.

Let’s say, for instance, that the user records Order 1000 for customer P600. As the internal
number assigned to this customer is 123, this internal number will be stored for Order 1000.
This connection — or join — between the internal customer number in the ORDERS table
and the internal customer number in the CUSTOMERS table is not automatic. It must be
explicitly specified in the Form Columns form. You must indicate the column by which the join
is made (Join Column) and the table to which it belongs (Join Table).

There are certain restrictions on the column(s) through which the join is executed:

• These columns must appear in the join table’s unique (or autounique) key.
• They must include all key columns.

Note: The column comprising an autounique key meets both conditions required of a join
column.

Special Joins

There are two special types of joins:

• multiple joins — where imported form columns are derived from the same table
column

• outer joins — that allow for unmatched rows between the base and join tables.

A good example of a multiple join is found in the DOCUMENTS_T form, based on the
DOCUMENTS table, which includes two different warehouses: the sending warehouse and
the receiving one. The DOCUMENTS table stores the internal numbers of the sending and
receiving warehouses in the WARHS and TOWARHS columns, respectively. Both of these
internal numbers are joined to the same join column: WARHS from the WAREHOUSES
table. That is, the join is made to the same table twice — once to import data regarding the
sending warehouse, and again to import data with respect to the receiving warehouse. A
distinction is made between the two joins by means of the Join ID: the join for the sending

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 84

warehouse is assigned a Join ID of 0, while the join for the receiving warehouse is assigned
a Join ID of 1.

Similarly, a distinction must be made between the form columns that are imported through
each join. For instance, the numbers of both these warehouses (WARHSNAME and
TOWARHSNAME, respectively) are imported from the same table column: WARHSNAME
from the WAREHOUSES table. It is essential that the number of the sending warehouse be
imported through join 0, whereas the number of the receiving warehouse be imported
through join 1. Thus, the former is assigned a Column ID of 0, whereas the latter is assigned
a Column ID of 1. Any other value imported from the WAREHOUSES table (e.g., the
warehouse description, the bin number) is likewise assigned the appropriate Column ID.

Important note: When creating your own multiple joins, use a join ID and column ID greater
than 5.

As opposed to regular joins, an outer join allows for unmatched rows between the base and
join tables. To designate the outer join, add a question mark (?) in the relevant Column ID or
Join ID column, next to the number of the ID. The decision as to where to put the question
mark (column ID? join ID?) depends on where the null record is expected to be encountered.
If it is in the table from which the form column is derived (i.e., the one appearing in the Table
Name column of the Form Columns form), then add the question mark to the column ID. If
the null record is expected to appear in the join table, attach the question mark to the join ID.
In the case of an additional join between the outer join table and another table, the question
mark should appear in each of these join IDs.

Example: The FNCITEMS table, which stores journal entry items, is linked to
FNCITEMSB, a table that (among other things) stores profit/cost centers from
groups 2-5. An outer join is required, as not all records in FNCITEMS have values
in FNCITEMSB (that is, a given journal entry item may not necessarily include
profit/cost centers from groups 2-5). Moreover, as access to the COSTCENTERS
table is via FNCITEMSB, it is necessary to create an outer join there as well (for
instance, via the COSTC2 column).

Note: Outer-joined tables are accessed after regular join tables.

Calculated Columns

In addition to form columns derived from the base table, as well as form columns imported
from other tables, you can also create columns which display data derived from other form
columns. These data are not stored in or retrieved from any database table. They are filled in
when the form row is exited. The value of a calculated column is determined on the basis of
other columns in the form, as defined in an expression.

Example: The ORDERITEMS form includes the VATPRICE column, which
displays the line item’s extended price after tax is added. The value of this column
(of REAL type) is determined by the part price as well as the percentage of tax that
applies to the part in question.

Finally, an imported column that is updated in the form is created just like a calculated
column. In this case, the expression does not calculate the column value, but rather defines
the join table and join column.

To add a calculated column to a given form, take the following steps:

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 85

1. Designate a unique column name in the Form Column Name column of the Form
Columns form (abiding by all column name restrictions).

2. Specify its position within the form in the Pos column.
3. If a calculated column displays a value that should not be revised, specify R in the

Read-only/Mandatory column. Leave the column blank in the case of an imported
column that is updated in the form (e.g., the STARTDATE column in the
DOCUMENTS_Q form) or when the value in the calculated column updates a value
in another column (e.g., the BOOLCLOSED column in the ORDERS form).

4. Designate the column’s width in the Width column. In the case of a real number or a
shifted integer, designate decimal precision as well.

5. Specify the column title in the Revised Title column. Unlike regular form columns,
which inherit titles from their respective table columns, calculated columns have to
be assigned titles. If you forget to do so, the column will remain untitled when the
form is accessed by a user.

6. Enter the sub-level form, Form Column Extension.
7. Write the expression that determines the value of the column in the Expression/

Condition column, using SQL syntax. If there is not enough room for the entire
expression, continue it in the sub-level form.

8. Designate the column type (e.g., CHAR, INT, REAL) in the Column Type column of
the Form Column Extension form. Note that the Type column in the Form Columns
form will not display the type of a calculated column.

Note: Once you exit the sub-level form, a check mark will appear in the Expression/
Condition column of the Form Columns form. This flag helps you to find any calculated
columns in the form at a glance.

Sometimes you may wish to include a column that sets a condition for the entire record. In
that case, do not create a calculated column, as described above. Instead, add a dummy
column to the form (column name = DUMMY; table name = DUMMY) and assign it the
desired condition. The condition itself must be preceded by “=1 AND.”

Example: See the DUMMY column in the FNCIFORQIV form.

Custom Columns: Data Authorization

Priority’s Data Authorization mechanism enables you to restrict the content that users can
access, based on attributes such as the branch in which a document was recorded and/or
the sales rep who performed the transaction.

If you have created a custom table column for a piece of data that is normally subject to data
authorizations, you will need to apply the same Data Authorization settings defined for the
standard table column to the custom table column as well.

In order for the custom column to inherit data privileges defined for an existing system
column, the two columns need to be linked. To do so:

1. Enter the Data Privileges form (System Management → System Maintenance →
Privileges → Auxiliary Programs (Privileges) → Data Privileges).

2. Add a line for the custom table column, specifying the name of the custom Column
and the Table in which it appears, and the names of the Main Column and Main
Table to which it should be linked. Consequently, the custom Column inherits the
data privileges defined for the Main Column.

Example: If data privileges have been defined for the Main Column BRANCH in

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 86

the Main Table BRANCHES, you can add a line to the Data Privileges form for a
second branch column BRANCH2 in the ORDERS table. As a result, the
BRANCH2 column inherits the data privileges defined for the Main Column
(BRANCH).

To grant data authorization to a given user, add one or more lines to the USERCLMNPRIV
table, as follows:

1. Record the relevant username in the USER column.
2. In the COLUMNA column, specify the name of the column for which data privileges

have been defined, as recorded in the MAINCOLUMN column of the CLMNPRIV
table.

3. Do one of the following:
◦ If the user in question is authorized to see all data, insert a single line for

this user in the USERCLMNPRIV table and record ‘*’ in the VALUE column.
◦ If the user in question is authorized to see specific data only, insert a

separate line in the USERCLMNPRIV table for each value in the
designated column for which the user is authorized.

Adding Form Columns to Split Reconciliations
Forms

Priority has a number of forms dedicated to financial reconciliations that have a different
visual appearance compared to other forms. These forms can only be opened in the Web
interface and are unique in that form columns are split into two sections of the screen.

Adding columns is the only customization allowed for these forms.

The forms are:

Form Form Title
ACCRECONSP Account Recon. Work Area (Split)
BANKRECONSP Bank Recon. Work Area (Split)
CREDITRECONSP Credit Cd Recon. Wk Area (Split)

If you want to add columns to this form, follow the following rules:

• All column names must begin with either the FRST or SCND prefix to designate in
which side of the form they appear - first and second respectively. This prefix should
then be followed by your customization prefix, and only then by the name of the
column, e.g. FRST_EXMP_MYNAME.

• All custom columns added must be Read only.

In some cases, you’ll want to make the new column accessible in both sides of the work
area. In that case you should create two columns with the same settings, one with a FRST
prefix and another with the SCND prefix.

Joins for these forms are the same as normal. Use a single join if you want to bring data from
another table.

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 87

MDM Features

Supporting Transformation Interfaces

21.1

MDM transformation interfaces take data from one type of record in the source company,
and create a different type of record in the target company. For example, an interface that
converts a purchase order in company A into a sales order in company B.

Transformation interfaces require storing additional data at the form level, and by default are
only supported in specific forms (see the MDM SOP on Priority Xpert for more information.)

To add support for transformation interfaces in additional forms, you need to add these
private columns to the form:

1. A XXXX_MYEMAIL calculated form column, of type CHAR, with the following
expression:

(ENVIRONMENTA5.INTERNALID <> '' ?
ENVIRONMENTA5.INTERNALID : SQL.ENV)

2. A XXXX_DNAME column based on the ENVIRONMENTA.DNAME table column,
with a join ID of 5, and the expression SQL.ENV.

3. An EI_EMAIL column based on the MAILINTERCOMP column of either the
CUSTOMERSA or SUPPLIERSA tables - choose the appropriate one based on the
form in questions. For example, in Export Invoices (FINVOICES), you’d select
CUSTOMERSA.

See the standard versions of these columns in the ORDERS form as an example.

MDM-only Permissions

22.0

You can limit certain forms and columns so that they can only be updated via Master Data
Management (MDM, also known as EDI interfaces).

To enable this permission type, you need to add the following:

1. Add a join between the form of the document in question to the SEARCHDOCVERS
table.

2. Add a form column named FROMEDI to the form, which is based on the FROMEDI
column of the SEARCHDOCVERS table.

You can see an example of this kind of column in the AINVOICES form.

Form Columns PDF last generated: Dec 10, 2024

Priority SDK Page 88

Sub-level Forms

Introduction

Priority forms are grouped within logical contexts into a tree-like configuration, representing
one-to-many or one-to-one relationships. The root of the tree is the form which is accessed
directly from a menu (e.g., Sales Orders); that is, it has no upper-level forms of its own. The
branches of the tree are the sub-level forms of the root form, their sub-levels and so on. Any
given form can have several sub-levels on the same level.

Example: Order Items and Tasks are both sub-levels of the Sales Orders form.

Relationships Between Upper- and Sub-level
Forms

The relationship between an upper-level form and its sub-level may be:

• one-to-many — multiple records in the sub-level form are linked to a single record in
the upper-level form

• one-to-one — a single record in the sub-level is linked to the record in the upper-
level form.

Generally, the relationship between forms is one-to-many. For instance, each sales order can
have several different order items. Sometimes, however, you wish to limit the sub-level form
to a single record.

To obtain a one-to-one relationship, specify N in the One-to-Many column of the Form
Generator form at the record for the sub-level form.

Linking Upper-level and Sub-level Forms

A sub-level form is used to display data that are relevant for a single record in its upper-level
form. This linkage between the upper and sub-level form is executed through one or more
columns. If the upper-level form has an autounique key, the link is made through the column
comprising that key. Otherwise, the link is made through each column of its unique key.

Example: It is important to ensure that the parts ordered in Order 1000 are linked
to the record of that order in the Sales Orders form, while the parts ordered in
Order 1007 are linked to the record of that order. Thus, the ORD column in the
Order Items form is equated with the ORD column in the Sales Orders form.

The linkage is created by means of a condition written for the relevant column in the sub-
level form (e.g., the ORD column in the Order Items form).

In the case of an updatable sub-level (like Order Items), use the following format:

:formname.columnname

Sub-level Forms PDF last generated: Dec 10, 2024

Priority SDK Page 89

That is, begin with a colon, followed by the name of the upper-level form, a period, and finally
the name of the column in the upper-level form to which the linkage is made (e.g.,
:ORDERS.ORD).

If the sub-level is a query form (like Warehouse Balances), add an equal sign to the
beginning of the condition:

=:formname.columnname

The addition of the equal sign allows users to delete records from the upper-level form even
though records appear in the sub-level.

Specify this condition in the Expression/Condition column of the Form Column Extension
form, a sub-level of the Form Columns form.

Notes:

• You can use the double dollar sign (\() as a wildcard in place of the upper-level form
name (e.g., :\).ORD). Moreover, if the link is made between columns having identical
names, you can use the @ sign as a wildcard in place of the form column name
(e.g., :$$.@).

• For a detailed explanation of conditions, see Conditions of Record Display and
Insertion.

Creating a Form Tree

In addition to linking a sub-level form to its upper-level via their common record, you also
have to locate them within a form tree. As a given upper-level form can have several sub-
levels, you need to determine the order in which sub-levels appear (e.g., in the list of sub-
levels). Each sub-level form’s position is defined by an integer: the lower the integer, the
higher the position. Assign the lowest integer to the most frequently used sub-level form,
which will then serve as the default sub-level. Integers need not be consecutive.

To link a sub-level form to its upper-level form and to define its position, use either the Sub-
level Forms form or the Upper-level Forms form. Both are sub-levels of the Form Generator
form.

Linking the Tree to a Menu

In addition, the root form of a form tree should be linked to a menu, from which it will be
loaded (alternatively, the root form can be activated from within another form via an Action).
As a menu generally contains several items, you are required to indicate the position of the
root form within the menu (specify an integer). Again, the lower the integer, the higher the
position of the form in relation to other items appearing in the menu.

Linkage between a root form and its menu is stored in the MENU table.

To link a root form to a menu and to define its position, use either the Menu/Form Link form,
a sub-level of the Form Generator form, or the Menu Items form, a sub-level of the Menu
Generator form.

Sub-level Forms PDF last generated: Dec 10, 2024

Priority SDK Page 90

Conditions of Record Display and
Insertion

Introduction

Priority allows for two types of condition:

• a simple query condition, which restrict the records from the base table that can be
retrieved into the form

• an Assign condition, which both restricts record display in the form and assigns the
designated value to new records.

To specify a condition (regardless of type), use the Expression/Condition column of the Form
Column Extension form (a sub-level of Form Columns). If it is too long to fit in that column,
continue in the sub-level form.

Once the Form Column Extension form is exited, a check mark appears in the Expression/
Condition column of its upper-level form, Form Columns. This flag makes it easy to find any
form column with a condition.

Query Condition — Record Display

Query conditions restrict the records from the base table that can be accessed by the form in
question. The condition must begin with a comparative operator (<, >, <=, >=, <>, =). Only
records that comply with the prescribed condition will appear in the form.

Of course, users can add their own query conditions from within the form. Yet, whereas user
stipulations change for each data retrieval (in keeping with the current situation), the
predefined query conditions will always apply.

Example: To restrict the display of records in the WARHSBAL form to parts with
actual balances in the warehouse, the following condition would be written for the
TBALANCE column: >0. This condition should be written in any form that displays
such balances. Hence, while the WARHSBAL table will include records with a
balance of 0, only those records which meet the condition will appear in each of the
forms.

As mentioned earlier, you should also use a simple query condition to link a query sub-level
to its upper-level form. For instance, the condition linking a balance to its respective
warehouse (=:WAREHOUSES.WARHS) restricts displayed balances to those for this
particular warehouse. Without this restriction, balances for all warehouses would appear.

You include the operator (=) in this condition so that the user can delete records from the
upper-level form even though records appear in the sub-level. The reason for this usage is
that the built-in delete triggers do not allow the deletion of any records in an upper-level form
when there are records with assigned values in the sub-level form. As opposed to Assign
conditions, which assign values into each record in the sub-level, a simple query condition
does not. Hence, deletion will not be blocked.

Conditions of Record Display and Insertion PDF last generated: Dec 10, 2024

Priority SDK Page 91

Assign Condition — Record Display and Insertion

An Assign condition is distinguished from a simple query condition in that no comparative
operator is used. This type of condition not only restricts record display in the form to those
records that hold a certain value, but also assigns that value to each new record. You are
already familiar with one Assign condition — the one that links an updatable sub-level form
to its upper-level (e.g., ORDERS.ORD). This condition, written in this case for the ORD
column of the ORDERITEMS form, has a two-fold effect:

• It assigns an internal value (the value of ORD in the ORDERS form) to the ORD
column of the ORDERITEMS form, whenever a new record is added.

• It restricts record display to those ordered items which contain that value in their
ORD column.

Example: All order items in order 0998 will receive a value of “13” in their ORD
column, whereas all items in order 1010 will receive an internal value of “22.”
Consequently, the former set of ordered goods will appear in the ORDERITEMS
form under order 0998, while the latter set will appear under order 1010.

Another use of an Assign condition is to distinguish between data records that are stored in
the same table but displayed in different forms.

Example: Consider the following forms, all based on the DOCUMENTS table:
Customer Shipments (DOCUMENTS_D), Goods Receiving Vouchers
(DOCUMENTS_P) and Warehouse Transfers (DOCUMENTS_T). The records in
these three forms are distinguished by their type (D for shipment, P for GRV and T
for transfer). Thus, for example, the condition ‘D’ is written for the TYPE column of
the DOCUMENTS_D form. Consequently, whenever a new record is inserted in the
form, the hidden TYPE column is automatically assigned a value of D. Moreover,
data retrieval will only retrieve records from the DOCUMENTS table that have a
type of D. Similar conditions are written for the TYPE columns of DOCUMENTS_P
and DOCUMENTS_T (P and T, respectively).

Conditions of Record Display and Insertion PDF last generated: Dec 10, 2024

Priority SDK Page 92

Actions
While Priority entities are generally accessed from the menus, they may also be activated
from within a specific record in a given form. The form’s Actions may include:

• root form - the Action loads the form and its sub-levels;
• report - runs the report, then allows for display, printout, etc.
• procedure - if the procedure includes a program, the program will be run; if it entails

processing of a report, the report will be run.

During activation of a program, report or procedure, input is usually based on the content of
the form line on which the cursor rests (sometimes user input is also allowed). Upon exiting
the entity that was activated, the user returns to his or her original place in the form.

Example: Select Order Confirmation from the list of Actions in the Sales Orders
form, and a printout will be created for the sales order on which the cursor rests in
the form.

Actions can be executed in the foreground or the background. If they are in the background,
the user will be able to continue work in the form while the program/procedure is being
executed or while the report is run, processed (where necessary) and printed. If run in the
foreground, the user has to wait until the action completes to continue work in the form; and
if the current form record (i.e., the line on which the cursor rests) has been updated by
running the Action, any new values will automatically be displayed. Use background
execution to run large programs and to print out reports. Designate foreground activation
when an entity is executed quickly and sends a response to the waiting user.

To create the link between a form and an entity as an Action, retrieve the form from the Form
Generator form and specify the entity in the Actions sub-level form. Or enter the generator
for the entity (e.g., the Report Generator for a report) and specify the form from which it is
accessed in the Menu/Form Links sub-level form.

Note: For more details on actions that generate simple reports, see Running a Report. For
more on processed reports and other procedures, see Running a Procedure.

Actions PDF last generated: Dec 10, 2024

Priority SDK Page 93

Form Refresh
Generally, the data retrieved in any given form are relatively static. That is, changes are
usually made by one user at a time. Sometimes, however, the data displayed in a form are
highly dynamic — updated periodically by the system. In the former case, it is enough to
retrieve records once; in the latter, a periodic refresh of the form is in order.

If you want a form to be refreshed periodically by the system, you need to fill in the Refresh
Form form, a sub-level of the Form Generator form. Indicate the number of seconds that
should pass without user input between one form refresh and the next. Also indicate whether
all existing records should be retrieved during the refresh (this is important if new records
have been added since the last update) or only those that were retrieved previously. The
form refresh works per node on the form tree. That is, it only affects the specific form for
which it is designated; it does not affect any sub-levels. As the automatic refresh involves
access to the server, it should be used sparingly and with caution. When it is employed, the
TIMEOUT constant is disabled.

Additional ways of forcing a form refresh are:

• Include the REFRESH command in a form trigger. Do not include the REFRESH
command in POST-UPDATE or POST-INSERT triggers in froms that include a BPM
chart, as these can negatively interact with business rules.

• To refresh all retrieved records following an Action, include :ACTIVATEREFRESH =
1 in the PRE-FORM trigger of the form in question.

Form Refresh PDF last generated: Dec 10, 2024

Priority SDK Page 94

Accessing Related Forms

Introduction

When an imported column appears in a given form, the user can move from that column to a
target form (generally the form which is derived from the join table). In this way, the user can
gain easy and rapid access to the target form without having to use the menus.

The Target Form

The target form must meet two conditions:

• it must be a root form (have no upper-level form of its own).
• its base table must include the column from which the user originated.

The move from an imported column to a target form is automatic whenever the target form
and its base table share the same name (the form’s title is irrelevant). As only one form in the
entire application meets that condition (form names are unique), that form is considered the
default target form. However, you may also wish to designate a target form manually.
Generally, this is the case when several application forms share the same base table.
Obviously, only one of those forms have the same name as that table. Therefore, if you wish
the user to access a different form, you have to do one of the following:

• make the form in question the main target (record M in the Zoom/International
column of the Form Generator form); it can be reached from any form in the
application;

• make it an application target (record Z in the same column); it will only be reached
from forms having the same application code; or

• make it a specific target form for a single form column (in the Target Form Name
column of the Form Column Extension form); this will only affect the move from the
column in question.

All manually designated targets always override the default target form. The target form
designated for a specific column overrides all other target forms. The application target
always overrides the main target.

Note: To disable automatic access from a given column, specify the NULL form as the target
form in the Form Column Extension form.

Sometimes the table column name in the target form differs from the table column name in
the current form. In such a case, the names of both columns must be entered into the
ZOOMCOLUMNS table, so as to indicate which column in the target form is equivalent to the
current one.

Example: The LOADLOCATIONSMIG form includes the SONPARTNAME
column, for which the LOGPART form is specified as the target form. In order for
the correct record to be retrieved when entering LOGPART, the following is
recorded in the Target Zoom Columns (ZOOMCOLUMNS) form: Source Column =

Accessing Related Forms PDF last generated: Dec 10, 2024

Priority SDK Page 95

SONPARTNAME; Target Column = PARTNAME.

Dynamic Access

Sometimes you want the target form to vary, based on the data displayed in a given record.
For example, in the Audit Trail form (LOGFILE), the target form of the LOGDOCNO column
(Doc/Invoice Number) is the relevant document (DOCUMENT_D, DOCUMENTS_N,
AINVOICES, etc.).

This is achieved by defining a special hidden form column, ZOOM1, as well as specifying
ZOOM1 as the target form in the Form Column Extension sub-level form. This hidden form
column holds the internal number (in the current example, EXEC) of the relevant form for
each record. The DOCTYPES table has a special EXEC column that holds the internal
number of the form for that document type. In the PRE-FORM trigger of the LOGFILE form,
the variables that hold internal numbers of the relevant forms are initialized. In some cases
the target form is the form defined in the DOCTYPES table; in other cases the target form is
one of the variables initialized in the PRE-FORM trigger of the LOGFILE form.

Accessing Related Forms PDF last generated: Dec 10, 2024

Priority SDK Page 96

Creating a Text Form

Introduction

A text form is a one-column form of CHAR type which allows the user to write unlimited
comments applicable to a given record in a given form. Priority provides a program that
enables you to automatically construct text forms (and their corresponding tables) and link
them to the proper upper-level form. The text form will inherit the name of the upper-level
form, with the addition of the characters TEXT, as well as its application code. Moreover, it
will receive the title Remarks. You may, of course, revise any of these (in the Form Generator
form).

Note: The newly created table will inherit the name of the base table for the upper-
level form, with the addition of the characters TEXT, as well as its table type.

To automatically create a text form and link it to its upper-level form, run the Create Text
Form program (System Management → Generators → Forms).

The newly created text form will appear in the Form Generator form, and its linkage to the
upper-level form will be displayed through the appropriate forms (Sub-level Forms and
Upper-level Forms). Its base table will appear in the Table Dictionary. See also Text Form
Variables.

Removing HTML Tags from a Text Table

All text tables in ''Priority(e.g., PARTTEXT, ORDERSTEXT) contain HTML tags.
Sometimes, however, you may want to receive the content of these tables without the HTML
tags — for example, when exporting *Priority data to an external database. You can use the
DELHTML compiled program to delete HTML tags from any text table that has the structure
defined below.

Important note: Do not run this program on the original table. Instead, create a
linked table on which the program can run, so that the original table will not be
affected.

You can run the DELHTML program on any text table that is composed of the following
columns and unique key:
Table Columns:

1. IDCOLUMN1
2. IDCOLUMN2
3. IDCOLUMN3
4. IDCOLUMN4
5. TEXT
6. TEXTORD
7. TEXTLINE

Unique Key:

1. IDCOLUMN1

Creating a Text Form PDF last generated: Dec 10, 2024

Priority SDK Page 97

2. IDCOLUMN2
3. IDCOLUMN3
4. IDCOLUMN4
5. TEXTLINE

Note: IDCOLUMN1 - IDCOLUMN4 refer to identifying columns included in the
table's unique key, such as PART, ORD, ORDI. IDCOLUMN2, IDCOLUMN3, and
IDCOLUMN4 apply to tables whose unique key comprises more than two columns,
such as USEREDUCATIONTEXT.

The DELHTML program receives a table name and a linked table as input. Its output is the
linked table in which all HTML tags have been removed from the TEXT column.

Example: To delete HTML tags from the PARTTEXT table for Part ‘010’, the following code
would be used:

:PART = 0;
SELECT PART INTO :PART FROM PART WHERE PARTNAME = '010';
SELECT SQL.TMPFILE INTO :TXT FROM DUMMY;
LINK PARTTEXT TO :TXT;
GOTO 99 WHERE :RETVAL <= 0;
INSERT INTO PARTTEXT SELECT * FROM PARTTEXT ORIG
WHERE PART = :PART AND TEXT <> '';
/* Don't insert empty lines into the link table */
UNLINK PARTTEXT;
/* text with HTML tags */
SELECT TEXT FROM PARTTEXT WHERE PART = :PART FORMAT;
EXECUTE DELHTML 'PARTTEXT', :TXT;
LINK PARTTEXT TO :TXT;
GOTO 99 WHERE :RETVAL <= 0;
/* same text without HTML tags */
SELECT TEXT FROM PARTTEXT WHERE PART = :PART FORMAT;
UNLINK PARTTEXT;
LABEL 99;

Creating a Text Form PDF last generated: Dec 10, 2024

Priority SDK Page 98

Default Designs for Forms

What is a Default Design for a Form?
Most of the frequently used upper-level forms are pre-designed. That is, they display a single
record organized into sets of vertical columns within tabs. The number of tabs, their titles,
how columns are organized and the like, are all determined by the designer. Users can then
use the Organize Field utility to rearrange tabs and their columns, hide columns, change
titles and so forth.

Creating a Default Design
To create a default design:

1. Open the form (e.g. Sales Orders) in Priority and design it using the system's
Organize Fields utility. You can design both the single-record view (with tabs and
columns) and the table view (rearranging the order of columns). More information on
using this utility can be found in the User Interface Guide.

2. Once you are satisfied with your design, open the form in question in the Form
Generator, and run the Set My Design as Default program from the Actions menu.

The new design will be set as the default for that installation of Priority – users will revert to it
after clicking Restore Default in the Organize Fields utility.

Note: Default Designs replace screen-painting as a method to design a form. However, an
existing screen-painting takes precedence over a default design. If you have changed the
default design and see no effect in the form for other users, check if there is an existing
screen-painting file in the system/document folder. If there is one, delete it (save a backup)
or move it, and check if the default design has taken effect.

The screen-painting files use internal form numbers for the file name. To find the internal
number of a given form, run the following query via the SQL Development program (fill in the
form name):

SELECT EXEC FROM EXEC
WHERE ENAME = 'formname' AND TYPE = 'F' FORMAT;

Distributing a Default Design in a
Revision
If you are creating a new form or design in your test environment, you can distribute it as part
of a revision:

1. Open the Version Revisions form and add a revision.
2. A step with code TAKEENTHEADER is automatically recorded for the form which

you designed. Flag it for inclusion in the revision.

Default Designs for Forms PDF last generated: Dec 10, 2024

Priority SDK Page 99

3. Return to the upper level form and enter S in the Designed Form field.
4. Prepare the revision.

Distributing a Default Design in a Revision PDF last generated: Dec 10, 2024

Priority SDK Page 100

Form Triggers

Introduction

A form trigger in Priority is a set of SQL statements that affect record insertions, updates
and deletions during form completion. Before creating triggers, it is important to fully
understand the use of SQL syntax in Priority (see SQL Syntax).

Priority provides for several types of triggers in the construction of forms. It both includes
built-in triggers of its own and enables you to create your own triggers: Column (or Field)
triggers, Row triggers and Form triggers. This section first explains variables that are
employed in triggers, then briefly illustrates Priority’s built-in triggers, and finally provides an
in-depth look at user-designed triggers. Each type of user-designed trigger is described and
exemplified, in addition to which a series of complex examples are presented later on.

It should be noted that the term form trigger is used in two senses:

• generically, to refer to all triggers activated by either exiting a form column, exiting
the row or entering/exiting the form;

• to refer to a specific type of trigger — PRE-FORM and POST-FORM — that takes
effect when the form is entered or exited, respectively.

To distinguish between these two usages, the former (generic sense) will be called a “form
trigger,” whereas the latter (specific sense) will be called a “Form trigger.” On form
debugging, see Debug Tools.

Form Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 101

SQL Variables

Introduction

Priority’s form preparation mechanism recognizes the following as SQL variables in form
triggers; anything else will generate a warning message:

• a form column variable — e.g., :ORDERS.QUANT (see below)
• any variable preceded by a colon, which does not include a period — e.g., :QUANT
• system variables.

See also Form Triggers.

Form Column Variables

Priority defines three SQL variables for each form column:

• :form_name.form_column_name — stores the column’s current value on screen
(note the required colon and period)

• :form_name1.form_column_name — stores its value in the table (note the addition
of “1” before the period)

• :form_name.form_column_name.TITLE — stores the form column title.

Thus, :ORDERITEMS.QUANT refers to the ordered quantity currently designated in the
ORDERITEMS form. In contrast, :ORDERITEMS1.QUANT refers to the ordered quantity
stored in the ORDERITEMS table. If you are updating an existing record and have not left
the current line in the form, then these variables will hold two different values — the updated
value and the previous one, respectively. Along the same lines,
:ORDERITEMS.QUANT.TITLE refers to the title of this column. This is useful, for instance,
as a parameter in error or warning messages for triggers. These form column variables may
be used in creating expressions and triggers for the form.

Wildcards

Generally, expressions and triggers refer to the current form (e.g., ORDERITEMS) or to its
upper-level form (e.g., ORDERS). Priority allows you to use the dollar sign as a wildcard in
place of these form names. Use one dollar sign ($) for the current form, two ($$) for the next
level up, three ($$$) for the next level, and so on.

Consider the following trigger in the ORDERITEMS form, which computes the Extended
Price of an order item:

:$.QPRICE = REALQUANT(:$.TQUANT)
* :$.PRICE * (100.0 - :$.PERCENT) / 100.0
* (:$$.CURRENCY = -1 ? :$.IEXCHANGE : 1.0);

Another example (this time of how to use the previous value of a specific column) is found in
the CHECK-FIELD trigger for the PARTNAME column in the same form:

SQL Variables PDF last generated: Dec 10, 2024

Priority SDK Page 102

GOTO 1 WHERE :$1.PARTNAME = '' OR :$.ORDI = 0;
GOTO 1 WHERE :$.@ = :$1.PARTNAME;

Sometimes a trigger employing a dollar sign may refer to a non-existing form (e.g., $$ when
there is no upper-level form). This sometimes happens when the trigger is included in more
than one form. In such a case, Priority will consider the wildcard as representing the next
form level down (the current form, to continue the above example).

Expressions and Column triggers often refer to the current form column. You can therefore
use @ as a wildcard in place of this form column name (see example above). For instance,
the link between sub-level and upper-level forms is generally made between columns having
identical names. This linkage can be expressed using the @ wildcard.

The use of these wildcards makes it easier to read the trigger. They are also useful when
employing an #INCLUDE command in a trigger (see Including One Trigger in Another).

Note: The use of @ in a Row or Form trigger will stand for the name of that trigger (e.g.,
POST-FORM).

User-defined Variables

In addition to form-column variables, whose values are determined by the data in the form
(or table) column, you may also define your own variables. For example, the following SQL
statement employs a :CNT variable that counts the number of work orders opened for a
given order item (see the CHECK-FIELD trigger for the DUEDATE column of the
ORDERITEMS form):

:CNT = 0;
SELECT COUNT(*) INTO :CNT
FROM ORDSERIAL, SERIAL
WHERE ORDSERIAL.ORDI = :$.ORDI
AND ORDSERIAL.SERIAL = SERIAL.SERIAL
AND SERIAL.PEDATE > :$.DUEDATE
AND SERIAL.CLOSEDATE = 0;

When naming a variable, use the following rule of thumb:

• If the variable is included in a trigger in a standard form, use the appropriate four-
letter prefix, so as to easily distinguish it from standard variables.

• If the variable is included in a trigger in your own form, the prefix is unnecessary.

For more details, see Rules for Customizing Forms.

Note: Variable names are limited to 50 characters. When naming variables, keep in mind
that a variable defined in a trigger for a standard form also includes: the company prefix (see
below), two underlines (_), and a period (.).

User-defined variables (such as :CNT) do not have an automatic starting value; rather, this
must be set by a trigger. Consider, for instance, the following SQL statement in the first line
of the POST-INSERT trigger for the TRANSTRIG form (this trigger is included in POST-

SQL Variables PDF last generated: Dec 10, 2024

Priority SDK Page 103

INSERT triggers for the TRANSORDER_D form and many other forms like it), which sets the
value of the :QUANT and :TQUANT variables on the basis of the quantity of shipped items:
SELECT 0 + :$.TQUANT,0 + :$.QUANT INTO :TQUANT,:QUANT FROM DUMMY;

Note: Alternatively, you could use :TQUANT = :$.TQUANT and :QUANT = :$.QUANT,
respectively.

Global Variables in Forms

Some forms are used to work with data that is relevant to more than one company, i.e., they
refer to one of the companies defined in the ENVIRONMENT table or contain a trigger with a
loop that runs for all companies (e.g., the Itemized Rates form). When defining your own
variables for use in a multi-company form, you need to make sure to define them
accordingly.

When a trigger is activated in a multi-company form, any user-defined variables included in
the trigger automatically receive a prefix referring to the relevant company. For example, if a
trigger that contains a variable called :SOMEVAR is activated from a record that is defined
for the comp1 company, then while the trigger is running the variable will be renamed
:_comp1.SOMEVAR. If the same trigger is activated from a record that is defined for the
comp2 company, then while the trigger is running the variable will be renamed
:_comp2.SOMEVAR.

In order to define a global variable for a multi-company form (i.e., a variable that receives the
same value for all companies, regardless of the current record), add the prefix “GLOBAL.” to
the variable name (e.g., :GLOBAL.SOMEVAR). This prefix ensures that no company-specific
prefix will be added when a trigger containing that variable is activated (and the variable can
be used globally within the form).

Global variables are particularly useful when you want to define a loop that runs for all
companies and updates records in each company (such as the loop in the Itemized Rates
form). In such a case, you need to define a global variable that stores the name of the
company from which the loop starts. If you use a local variable to store the company name,
this variable will receive the prefix defined for the original company upon completing the loop
and will subsequently be empty.

The DUMMY Table

You will note that the SELECT statements illustrated above refer to the DUMMY table. This
is a single-record, single-column table which may be included in an SQL statement
whenever values are assigned to a variable. While the SELECT statements in the above
triggers could have referred to an ordinary database table, this would have caused the SQL
mechanism to travel through all the table’s records, which would take some time. It is
therefore much faster to execute the SELECT via the DUMMY table. In fact, in Priority any
SELECT ... FROM DUMMY statement does not even access the DUMMY table; hence,
execution is even faster.

Text Form Variables

Using a form trigger, you can define a given text form as read-only when its upper-level form

SQL Variables PDF last generated: Dec 10, 2024

Priority SDK Page 104

has a particular status, and you can prevent users from opening the text editor in non-HTML
format. In the former case, set the :$.READONLY.T variable to 1; in the latter, set the
:$.NOEDITOR.T variable to 1.

Example: See the PRE-FORM trigger in the ORDERSTEXT form.

By default, all text forms in Priority are HTML text forms. If you need to create a plain text
form, set the :$.NOHTML.T variable to 1.

Example: See the PRE-FORM trigger in the FTRIGTEXT form.

SQL Variables PDF last generated: Dec 10, 2024

Priority SDK Page 105

Built-in Triggers

Introduction

See also Form Triggers.

Essentially, the built-in triggers perform certain checks and, if the checks are successful,
update the database accordingly. When a new record has been entered in a form, and an
attempt is made to exit the line, the built-in triggers generate the following events:

• They check that values have been assigned to all the columns comprising any
unique key(s).

• If the check succeeds, the line is successfully exited, the record is inserted into the
form’s base table, and an automatic value is given to the autounique key in that
record, if there is one (increasing the counter by 1).

• If the check fails, an error message appears and the user cannot leave the line
without clearing it or adding the missing values from the unique key.

When the user designates a unique key that already exists in the database, the built-in
triggers automatically fill in all columns in the record. This is one way to retrieve an existing
record from the database. There is then an automatic shift from insert mode into update
mode, and the retrieved record can be modified, as desired. If, however, no such record
exists in the database, then you remain in insert mode and a new record is created.

When the user specifies a new record, the built-in triggers verify that imported data exist in
their respective join tables. If this verification check is successful, and all columns in any of
the join table’s unique keys have been filled in, then the built-in triggers automatically fill in
any other columns in the form that are imported from that table.

When an existing record is updated in a form, the system performs the same verification
checks that are activated during record insertion. Once all update checks are successful, the
record is updated in the database.

Priority’s built-in triggers also prevent the violation of referential integrity. That is, they do not
allow the deletion of any record containing a column that is imported into another form
(including the column that links an upper-level form to its sub-level). Once all deletion checks
are successful, the record is deleted from the database.

Finally, built-in triggers perform privilege checks. That is, they check whether or not the user
is authorized to modify the database. Only an authorized user will be able to insert, update or
delete a record.

In sum, there are several types of built-in triggers:

• field triggers, which fill in and verify column values
• insert triggers, which verify the values in the row and insert the record in the table if

the verification check is successful
• update triggers, which verify the updated values in the row and update the record if

the verification check is successful
• delete triggers, which check for referential integrity and delete the record if the

check is successful.

Built-in Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 106

Field triggers are activated when the form column is exited. The other built-in triggers are
activated when the row is exited.

The built-in insert, update and delete triggers only affect the form’s base table. If the form is
to insert, update or delete records of other tables, you must write your own POST-INSERT,
POST-UPDATE and/or POST-DELETE triggers.

Example: The STARTDATE column in the Service Calls form (DOCUMENTS_Q)
is from the SERVCALLS table (whereas the base table of the DOCUMENTS_Q
form is DOCUMENTS). There are therefore POST-INSERT, POST-UPDATE and
POST-DELETE triggers for this form that generate the insert/update/delete of
records in the SERVCALLS table.

Field Triggers

If, when in insert mode, you fill in all columns that make up the base table's unique key
(which is often a single column, like ORDNAME or CUSTNAME), then the entire record is
automatically retrieved and there is an automatic shift from insert mode to update mode. This
function is carried out by Priority's built-in field triggers.

The following code displays the built-in POST-FIELD trigger for the ORDERS form.

Note: Examples here and below are taken from a file created by the Dump Form utility (run
via the SQL Development program, by selecting Form from the Dump menu). The result is
the SQL queries of the form, including the triggers of that form, both built-in and user-
defined.

ORDERS/ORDNAME/POST-FIELD TRIGGER:

#line 1 ORDERS/ORDNAME/POST-FIELD
GOTO 9 WHERE :NEXTPATTERNFLAG = 1;
SELECT CURDATE, BOOKNUM, FORECASTFLAG, DETAILS, REFERENCE, QPRICE,
PERCENT, DISPRICE, VAT, TOTPRICE, QPROFIT, ADJPRICEFLAG, ADVBAL,
ADVPERCENT, BSHN_OPENDATE, TYPE, CLOSED, PCLOSED, LEXCHANGE, DOER,
AGENT, BRANCH, CURRENCY, CUST, DEAL, DESTCODE, LCURRENCY, ORD,
ORD, ORD, ORD, ORDSTATUS, ORDTYPE, PAY, PHONE, PLIST, PROF, PROJ,
SHIPTYPE, USER, WARHS
INTO :ORDERS.CURDATE, :ORDERS.BOOKNUM, :ORDERS.FORECASTFLAG,
:ORDERS.DETAILS, :ORDERS.REFERENCE, :ORDERS.QPRICE, :ORDERS.PERCENT,
:ORDERS.DISPRICE, :ORDERS.VAT, :ORDERS.TOTPRICE, :ORDERS.QPROFIT,
:ORDERS.ADJPRICEFLAG, :ORDERS.ADVBAL, :ORDERS.ADVPERCENT,
:ORDERS.BSHN_OPENDATE, :ORDERS.TYPE, :ORDERS.CLOSED, :ORDERS.PCLOSED,
:ORDERS.LEXCHANGE, :ORDERS.DOER, :ORDERS.AGENT, :ORDERS.BRANCH,
:ORDERS.CURRENCY, :ORDERS.CUST, :ORDERS.DEAL, :ORDERS.DESTCODE,
:ORDERS.LCURRENCY, :ORDERS.LINKDOC, :ORDERS.NSCUST, :ORDERS.ORD,
:ORDERS.ORDS, :ORDERS.ORDSTATUS, :ORDERS.ORDTYPE, :ORDERS.PAY,
:ORDERS.PHONE, :ORDERS.PLIST, :ORDERS.PROF, :ORDERS.PROJ,
:ORDERS.SHIPTYPE, :ORDERS.USER, :ORDERS.WARHS
FROM ORDERS
WHERE ORDNAME = :ORDERS.ORDNAME;
LABEL 9;
:TABFORM = 22;#line 1 ORDERS/ORDNAME/POST-FIELD

Built-in Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 107

SELECT BRANCH INTO :$.BRANCH FROM USERSA WHERE :$.ORD = 0
AND :$.BRANCH = 0 AND USER = SQL.USER;
;

When inserting a new record, the built-in triggers verify that imported data exist in the join
table.

Example: Built-in triggers do not allow you to specify an order made by a customer
that does not appear in the CUSTOMERS table.

#line 1 ORDERS/CUSTNAME/CHECK-FIELD
GOTO 1 WHERE :ORDERS.CUSTNAME = '';
SELECT 'X'
FROM CUSTOMERS
WHERE CUSTNAME = :ORDERS.CUSTNAME;
SELECT 192 INTO :SCREENMSG
FROM DUMMY WHERE :RETVAL = 0;
LABEL 1;

Once all columns in any of the join table’s unique keys are filled in (provided that all
verification checks are successful), Priority will automatically fill in any columns in the form
that are imported from that table. Thus, once a valid customer number is designated in the
Sales Orders form, the corresponding customer name will be filled in automatically.

#line 1 ORDERS/CUSTNAME/POST-FIELD
SELECT CUSTDES, CUST, CUST, CURRENCY, LINKDATE, PAY, SHIPTYPE, MCUST,
NSFLAG, PAYCUST, SECONDLANGTEXT, VATFLAG
INTO :ORDERS.CUSTDES, :ORDERS.CUST, :ORDERS.CUSTA, :ORDERS.CUSTCURRENCY,
:ORDERS.CUSTLINKDATE, :ORDERS.CUSTPAY, :ORDERS.CUSTSHIPTYPE, :ORDERS.MCUST,
:ORDERS.NSFLAG, :ORDERS.PAYCUST, :ORDERS.SECONDLANGTEXT, :ORDERS.VATFLAG
FROM CUSTOMERS
WHERE CUSTNAME = :ORDERS.CUSTNAME;

Note: For technical reasons, the CUSTDES column is hidden in the ORDERS
form, and the CDES column is displayed instead. A POST-FIELD trigger copies the
value of CUSTDES into CDES.

Insert Triggers

When a line is exited, Priority’s built-in insert triggers check that values have been assigned
to all the columns comprising any unique key(s); they provide an automatic value to that
table’s autounique key (increasing the autounique counter by 1); and they insert the new
record into the form’s base table.

ORDERS INSERT TRIGGER:
INSERT INTO ORDERS (CURDATE, ORDNAME, BOOKNUM, FORECASTFLAG,
DETAILS, REFERENCE, QPRICE, PERCENT, DISPRICE, VAT, TOTPRICE,
QPROFIT, ADJPRICEFLAG, ADVBAL, ADVPERCENT, TYPE, CLOSED, PCLOSED,
LEXCHANGE, DOER, AGENT, BRANCH, CURRENCY, CUST, DEAL, DESTCODE,
LCURRENCY, ORD, ORD, ORD, ORD, ORDSTATUS, ORDTYPE, PAY, PHONE,
PLIST, PROF, PROJ, SHIPTYPE, USER, WARHS)
VALUES (:ORDERS.CURDATE, :ORDERS.ORDNAME, :ORDERS.BOOKNUM,
:ORDERS.FORECASTFLAG, :ORDERS.DETAILS, :ORDERS.REFERENCE,
:ORDERS.QPRICE, :ORDERS.PERCENT, :ORDERS.DISPRICE, :ORDERS.VAT,
:ORDERS.TOTPRICE, :ORDERS.QPROFIT, :ORDERS.ADJPRICEFLAG,

Built-in Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 108

:ORDERS.ADVBAL, :ORDERS.ADVPERCENT, :ORDERS.TYPE, :ORDERS.CLOSED,
:ORDERS.PCLOSED, :ORDERS.LEXCHANGE, :ORDERS.DOER, :ORDERS.AGENT,
:ORDERS.BRANCH, :ORDERS.CURRENCY, :ORDERS.CUST, :ORDERS.DEAL,
:ORDERS.DESTCODE, :ORDERS.LCURRENCY, :ORDERS.LINKDOC,
:ORDERS.NSCUST, :ORDERS.ORD, :ORDERS.ORDS, :ORDERS.ORDSTATUS,
:ORDERS.ORDTYPE, :ORDERS.PAY, :ORDERS.PHONE, :ORDERS.PLIST,
:ORDERS.PROF, :ORDERS.PROJ, :ORDERS.SHIPTYPE, :ORDERS.USER,
:ORDERS.WARHS);
SELECT 189 INTO :SCREENMSG FROM DUMMY WHERE :RETVAL = 0;
SELECT ORD, ORD, ORD, ORD
INTO :ORDERS.LINKDOC, :ORDERS.NSCUST, :ORDERS.ORD, :ORDERS.ORDS
FROM ORDERS
WHERE ORDNAME = :ORDERS.ORDNAME;

Update Triggers

In addition to most of the functions performed by the insert triggers, Priority’s built-in update
triggers ensure that no column which links one form to another form has been updated.

Example: If the PART form were linked to the PARTARC form (which stores child
parts) via the part catalogue number (PARTNAME), then that number could not be
changed once a child part was assigned. This problem is easily resolved by linking
the forms through the autounique key (PART), as the column in that key is not
updateable. Rather, its value is automatically assigned by the system.

Delete Triggers

Priority’s delete triggers prevent the violation of referential integrity. That is, they do not
allow the deletion of any record containing a column that is imported into another form
(including the column that links an upper-level form to its sub-level).

ORDERS/DELETE TRIGGER:
#line 1 ORDERS/DELETE
SELECT ENTMESSAGE('ORDERITEMS','F',0) INTO :PROGPARAM FROM DUMMY;
SELECT 94 INTO :PROGMSG
FROM ORDERITEMS WHERE (:$1.ORD <> 0 AND ORD = :$1.ORD);

Built-in Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 109

Creating your Own Triggers

Introduction

Triggers are specified in the Form Column Triggers form (a sub-level of the Form Generator)
and its sub-level, Form Column Triggers - Text, when they are to be activated by movement
out of a given column. They are specified in the Row & Form Triggers form and its sub level,
Row & Form Triggers - Text, when they are to be activated by exiting the line or the form.

Notes:

• Once a trigger has been formulated for any given form column, a check mark
appears in the Triggers column of the Form Columns form. This flag makes it easy
to locate those columns for which user-designed triggers have been created.

• You can track changes to custom triggers once they have been included in prepared
version revisions. See Tracking Changes to Queries.

It is easier to use Priority’s text editor to write trigger text rather than using the regular form.
However, this must be done with caution. Specifically, it is imperative to make sure the entire
trigger appears in the form before moving to the text editor; otherwise, any undisplayed lines
will be lost! So, if you have cleared any lines in the form or retrieved only some of the
records, be sure to retrieve all records before you run the text editor.

To access the text editor, press F6.

Tip: You can replace the built-in text editor with any editor of your choosing (e.g.,
Notepad++). To do so:

• In the Web Environment, simply press F6 within the trigger text. This saves a
temporary text file and opens it in the system default text editor. When you save the
file and close it, the trigger text is updated in Priority.

• In the Windows interface, run the Define External Editor program (System
Management → Generators → Procedures), indicating the full path to the file you
want to use (e.g., Tabula External Editor= C:\Windows\Notepad.exe) in the input
screen. Alternatively, you can open the tabula.ini file (in C:\Windows) and, under the
{Environment} section, revise the line for Tabula External Editor, giving the file path.

See also Form Triggers.

Types of Triggers

The following types of triggers may be created:

Trigger
Type

Trigger Description

CHECK-
FIELD

Performs verification checks on a value specified for a form column.

POST-
FIELD

Performs operations once form column check is successful.

PRE- Performs verification checks before a record is inserted into the database.

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 110

Trigger
Type

Trigger Description

INSERT
POST-
INSERT

Performs operations once a record is successfully inserted.

PRE-
UPDATE

Performs verification checks before a record is updated in the database.

POST-
UPDATE

Performs operations once a record is successfully updated.

PRE-
DELETE

Performs verification checks before a record is deleted from the database.

POST-
DELETE

Performs operations once a record is successfully deleted.

PRE-FORM Performs operations before a form is opened.
POST-
FORM

Performs operations when a form is exited, provided there were,insertions,
updates or deletes in the form.

CHOOSE-
FIELD

Creates a list of values from which the user can choose when filling in a,specific
field (for short lists).

SEARCH-
FIELD

Creates a list through which the user can search for the needed value of a
given field (for long lists).

SEARCH-
ALL-FIELD

Creates a list through which the user can search to find a value for a given field.
Allows the user to search by multiple criteria simultaneously.

Except for PRE-FORM triggers, which are always activated, triggers will not be activated
unless the user has made an addition or change in the column, row or form. Furthermore,
CHOOSE-FIELD and SEARCH-FIELD triggers are only activated when the user accesses a
Choose list or Search list, respectively.

Order of Trigger Execution

Before demonstrating the usage of each of the user-designed triggers, a brief explanation of
their sequence of execution is in order:

• CHECK-FIELD triggers precede POST-FIELD triggers.
• Built-in CHECK-FIELDs precede user-designed CHECK-FIELDs.
• Built-in POST-FIELDs precede user-designed POST-FIELDs.
• PRE- triggers precede their respective POST- triggers.
• Built-in triggers are executed after PRE- triggers, before POST- triggers.
• Standard and custom triggers are sorted alphabetically, so you should name your

own triggers accordingly. For example, to run your own trigger after a standard
POST-INSERT trigger, use POST-INSERT_AXXX or ZXXX_POST-INSERT (where
XXX is part of the prefix you normally use for this customer).

Trigger execution is discontinued when an END or ERRMSG command succeeds. It is not
discontinued if a WRNMSG command succeeds. If a CHECK-FIELD trigger is discontinued,
then the corresponding POST-FIELD triggers (built-in and user-designed) will not be
activated. Similarly, if a verification check fails in any of the PRE- triggers, then activation of
that trigger is discontinued, and the corresponding built-in and POST- trigger will not be
activated.

Example: Suppose the PARTNAME column of the ORDERITEMS form has been
assigned both a CHECK-FIELD and a POST-FIELD trigger. The former ensures

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 111

that the part number is not updated once it has been successfully inserted in a
record (rather, the user must delete the record for the unwanted part number and
insert a new record). The POST-FIELD trigger generates a unit price for the
ordered part based on the customer’s price list. If the CHECK-FIELD should fail
(i.e., the user has attempted to update the part number), then the price of the part
will not be generated. Nor will the built-in POST-FIELD trigger (which fills in the
internal number and part description on the basis of the designated part number)
be activated.

Naming Customized Triggers

Customized triggers should be given special names (which must be added to the List of
Triggers form; this form can be accessed by pressing F6 from the Row & Form Triggers form
or from the Form Column Triggers form). These names have to include key strings which
indicate the type of trigger involved, together with additional characters that refer to the
customization. For instance, customized CHECK-FIELD triggers must include the strings
“CHECK” and “FIELD” (in capital letters). Thus, a customized CHECK-FIELD for an
installation at CRR Holding Company might be labelled CRRH_CHECK-FIELD. Customized
trigger names must follow a number of rules:

• They can only contain alphanumeric values, the underline sign (_) and the hyphen (-
).

• They must begin with a letter.
• They must not include spaces.
• They must include a four-letter prefix or suffix, similar to what you use throughout

the system for this customer. The difference is that you will need to choose the
appropriate first letter of the prefix (or suffix) for sorting purposes (see example
above).

• They must include the required key strings that identify trigger, separated by
hyphens (i.e., PRE-, POST-, -FIELD, -FORM, -INSERT, -UPDATE, -DELETE,
CHECK-, CHOOSE-).

Notes:

• Key strings need not be consecutive (e.g., they may be separated by additional
strings).

• You can combine key strings to create, for instance, a customized trigger that
operates both as a POST-INSERT and a POST-UPDATE (e.g., ARRH_POST-
INSERT-UPDATE). Combined triggers cannot contain cursors, directly or via
includes.

• SEARCH-FIELD triggers are the exception to the rule. You cannot create a
customized SEARCH-FIELD, but rather must use the standard trigger. For details,
see Customization Rules.

Creating Column Triggers

CHECK-FIELD

CHECK-FIELD triggers perform verification checks on the value specified for a column. Note
that the value must have been inserted or updated by the user. The check will not be
performed if the user simply moves the cursor through this column, without making any

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 112

changes in it (even if the value was filled in by a trigger after record retrieval).

CHECK-FIELD triggers should be used when you wish to restrict the values that may be
specified (in addition to the validation checks built into the system). The error/warning
message is specified in the sub-level form (Error and Warning Messages). It should be
assigned a number greater than 500.

Example 1: The CHECK-FIELD trigger for the TYPE column of the PART form is:

ERRMSG 4 WHERE :$.TYPE NOT IN ('O','R','P');

This trigger restricts the part type to O,R, or P. If any other value is specified, the
user will not be able to exit the column, and an error message will be generated:
“Specify P (part), R (raw material) or O (other).”

Example 2: The CHECK-FIELD trigger for the TQUANT column of the
ORDERITEMS form warns the user if the quantity specified in the current column
of the current form is less than zero (“The designated quantity is a negative
number!”):

WRNMSG 105 WHERE :$.@ < 0;

POST-FIELD

POST-FIELD triggers cause operations to be performed once the value specified for the
column has successfully passed the verification checks. They are particularly useful for filling
in values.

Example: The POST-FIELD trigger for the SUPNAME column of the PORDERS
form inserts the current date (SQL.DATE8, a system function) into the CURDATE
column when opening a new purchase order if there is currently no date in that
column.

Note: When a POST-FIELD trigger changes a value of another form column, the POST-
FIELD of that other column (if there is one) will also be activated, but its CHECK-FIELD will
not.

CHOOSE-FIELD

CHOOSE-FIELD triggers create a short list of values from which the user can choose. Each
column in the CHOOSE-FIELD query is restricted to 64 characters.

Example: The CHOOSE-FIELD trigger for the PARTNAME column in the
Purchase Order Items form (PORDERITEMS) provides a list of the vendor’s parts
(:$$.SUP):

SELECT DISTINCT PARTDES,PARTNAME
FROM PART WHERE PART =
(SELECT PART FROM SUPPART WHERE SUP = :$$.SUP AND VALIDFLAG = 'Y')
AND PART <> 0
ORDER BY 1;

The above type of CHOOSE-FIELD is a regular SQL query where both arguments must be
of CHAR type. In order to display a number, you must first convert it into a string using the

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 113

ITOA function.

The first argument in the query is the description and the second is the value to be inserted
in the column where the Choose list is activated. You can also add a third argument for
sorting purposes. If you want to display a single value in the Choose list, you must add the
empty string to the CHOOSE-FIELD query.

Example: See the CHOOSE-FIELD trigger for the CPROFNUM column in the
ORDERS form. Its first argument displays the quote’s DETAILS and PDATE
columns; the second is the quote number (the value that will be filled in); the third
determines the sort, which is by the quote’s expiration date.

If the third argument (the one you wish to sort by) is a numeric value, using the ITOA function
alone will not result in correct sorting. For example, 10 would precede 5. To avoid this, you
can use the function ITOA(m,4), which will result in 1 becoming 0001, 5 becoming 0005 and
10 becoming 0010, so that the order when sorted will be correct.

The first argument in the query is stored in the :PAR4 system variable, where it can be used
by other triggers assigned to the same column.

Example: See the BUF2 trigger for the SERNUM column in the DOCUMENTS_Q
form (called from the CHECK-FIELD trigger for that form column). It uses the
:PAR4 variable, containing the part description that corresponds with the chosen
serialized part, to determine the corresponding part number.

A CHOOSE-FIELD trigger can also display a list of constant values, taken from form
messages. When using this type of CHOOSE-FIELD, the messages must be structured as
follows: Value, Description.

Example: The CHOOSE-FIELD trigger for the TYPE column of the LOGPART
form is:

MESSAGE BETWEEN 100 AND 102;

This trigger will display form messages 100, 101 and 102. Message 100 (for
example) is then defined as: P, "Make" item.

You can also create a Choose list from a set of queries. Results are then combined into a
single list, creating a Union Choose. Alternately, you can define the SELECT statement so
that once one of the queries succeeds, no subsequent queries are run. To do so, use the
syntax: SELECT /* AND STOP */ …

Example: Use a Union Choose in the ORDERS form to create a Choose list
comprised of the customer’s part list and the representative customer’s part list.
For an example of SELECT /* AND STOP */, see the CHOOSE-FIELD trigger for
the PARTNAME column in the ORDERITEMS form.

Note: The sort in a Union Choose is determined by the first column that is retrieved. That is,
the sort defined for each query, as well as the order of the queries, is ignored. If you want to
override this default, using instead the sequence of results retrieved from each query, add
the following comment anywhere in the trigger (note the space after the first asterisk and
before the second one):
/* NO SORT */
For an example of such usage, see the CHOOSE-FIELD trigger for the ACTNAME column in
the ALINE form.

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 114

Finally, you can use a variation of the trigger, called MCHOOSE-FIELD, to create a Multiple
Choose. This allows the user to select more than one value from the Choose list at a time.

Example: See the MCHOOSE-FIELD trigger in the ORDNAME column of the
DOCORD form.

Notes:

• If there are no values in the Choose list (e.g., no parts were defined for the vendor),
or if it contains more records than the number specified in the CHOOSEROWS
system constant, a SEARCH-FIELD trigger (if defined) is activated instead.

• A CHOOSE-FIELD trigger can also be defined for an entire form (see CHOOSE-
FIELD (for form)).

Creating Row Triggers

PRE-INSERT

PRE-INSERT triggers perform operations on a new record before it is inserted in the
database (generally verification checks that are not performed by the built-in Insert triggers).
This type of trigger is useful, for example, for checking the contents of several form columns
before the line is exited.

Example: The PRE-INSERT trigger for the CASH_CASH form (Cashiers) verifies
that a GL account is attached to the cashier:

WRNMSG 1 WHERE :$.ACCOUNT = 0;

POST-INSERT

POST-INSERT triggers cause the performance of certain operations once the record has
been successfully inserted in the database.

Example: The POST-INSERT trigger in DOCUMENTS_Q inserts a record into the
SERVCALLS table.

PRE-UPDATE

PRE-UPDATE triggers perform verification checks before a record is updated in the
database. Generally, they are similar to PRE-INSERT triggers.

Example: The PRE-UPDATE trigger in the CASH_CASH form verifies that a GL
account is attached to the cashier:

WRNMSG 1 WHERE :$.ACCOUNT = 0;

POST-UPDATE

POST-UPDATE triggers cause the performance of operations once the record has been
successfully updated.

Example: The POST-UPDATE trigger in the DOCUMENTS_Q form updates those

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 115

form columns that come from the SERVCALLS table.

PRE-DELETE

PRE-DELETE triggers perform verification checks before a record is deleted from the
database (in addition to the checks that are built into the system).

Example: The PRE-DELETE trigger in the ORDERITEMS form warns the user that
tries to delete a line containing a bonus item:

WRNMSG 334 WHERE :$.BONUSFLAG IN ('Y','F');

POST-DELETE

POST-DELETE triggers cause the performance of operations once a record has been
successfully deleted.

Example: The POST-DELETE trigger in the ORDERITEMS form deletes the
relevant record from the ORDERITEMSA table:

DELETE FROM ORDERITEMSA WHERE ORDI = :$.ORDI;

CHOOSE-FIELD (for form)

In addition to creating a CHOOSE-FIELD for a specific form column, you can also define a
CHOOSE trigger at the form level. This ensures that, whenever the designated table column
appears in another form, the Choose list will be defined by the current form. In fact, in order
to override it and create a different Choose list, you will have to write a new CHOOSE-FIELD
trigger for the form column in question.

Example: The CHOOSE-FIELD trigger in the ORDSTATUS form causes the
Choose list of order statuses to be taken from this form. That is, any form that
includes the ORDSTATUSDES column from the ORDSTATUS table takes its
CHOOSE-FIELD from the ORDSTATUS form.

SEARCH-FIELD

SEARCH-FIELD triggers create a long Search list which the user can use to search for a
desired value (e.g., to select a customer out of a list of thousands of customers). There are
two main types:

• the SEARCH-NAME-FIELD, which searches by number
• the SEARCH-DES-FIELD, which searches by name or description.

Example: The SEARCH-NAME-FIELD trigger in the CUSTOMERS form performs
the search on the customer number, whereas the SEARCH-DES-FIELD trigger
performs it on the customer name.

You can also create a Multiple Search, that is, a trigger that allows the user to select more
than one value from the Search list at a time (similar to MCHOOSE-FIELD). To do so,
include the following comment in the trigger: /* MULTI */.

Notes:

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 116

• A third type (SEARCH-EDES-FIELD) is used only in a non-English system, to
search by the name/description in English.

• SEARCH-FIELD triggers are the exception to the rule, as you cannot create a
customized trigger of this type. Instead, you must use standard SEARCH-FIELD
triggers. For details, see Rules for Customizing Forms.

• SEARCH-FIELD triggers can only display table columns with a width of up to 59
characters.

• If the user selects more than one value in a Multiple Search and the form generates
a warning or error message, insertion of the selected values will stop.

SEARCH-ALL-FIELD

SEARCH-ALL-FIELD also creates a long search list. The critical difference between it and
SEARCH-FIELD is that SEARCH-ALL-FIELD allows the user to search through multiple
attributes at once. This is useful for fields where different users might want to search by
different criteria.

Example: In the ORDERS form, when searching in Customer Name the SEARCH-
DES-FIELD trigger only searches through customer names.However, searching
using SEARCH-ALL-FIELD, you can search through both Customer Name and
Customer Number simultaneously.

In Priority Web, the SEARCH-ALL-FIELD trigger has additional functionality, as the same
search list can be shared across multiple columns in a form, determined by the columns
mentioned in the INCLUDES comment at the start of the trigger.

Example: The SEARCH-ALL-FIELD trigger in the CUSTOMERS form is available
in both the Customer Number and Customer Name fields in the Sales Orders
form. It’s appearance in Customer Name is governed by the commented line in
the trigger: ORDERS.F > CDES.

If the search trigger uses regular expression for ordering results (the ORDER BY section), all
components of the expression, including parentheses (), periods (.), and number denoting
order priority, must appear in a single line and without interrupting spaces.

Correct Example: taken from the SEARCH-ALL-FIELD in the LOGPART form

:ORDERBY > ((.*)PDES(.*)).3, (^(?!.*EPARTDES)(.*PARTDES)).3,
EPARTDES.2

Inorrect Example:

:ORDERBY > ((.*)PDES(.*)).3, (^(?!.*EPARTDES)
(.*PARTDES)).3, EPARTDES.2

By default, the system will use SEARCH-ALL-FIELD over a regular SEARCH-FIELD, but
users can change this using the SEARCHTYPE system constant.

Notes:

• Similar to SEARCH-FIELD, you cannot create a customized trigger of the type
SEARCH-ALL-FIELD. Only use the standard, existing triggers.

• It is important to distinguish between a multi SEARCH-FIELD, which allows the user
to select multiple search results, and SEARCH-ALL-FIELD, which automatically
searches by multiple criteria.

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 117

Creating Form Triggers

PRE-FORM

PRE-FORM triggers perform operations before the form is opened. This applies to all root
forms, as well as sub-level forms for which the Automatic Display column of the Sub-Level
Forms form (a sub-level of the Form Generator) is blank. This type of trigger may be used,
for example:

• to reset the value of a user-defined variable
• to generate a warning or error message concerning retrieved data
• to retrieve and display all records when the user opens the form :KEYSTROKES =
'*{Exit}';

• to refresh all retrieved records in a form following an Action :ACTIVATEQUERY =
1;

• to deactivate data privileges in a form :$.NOCLMNPRIV.T = 1;
• to deactivate data privileges for a specific table in a form: in a new PRE-FORM

trigger for the form in question, define the :$.NOTBLPRIV.T variable with the
name of the desired table; if the table you want to exclude has a join ID, this should
also be specified.

Example: In order to exclude the AGENTS table from data privilege restrictions
defined for the ORDERS form, add the following line: <syntaxhighlight lang="tsql"
enclose="pre>

:$.NOTBLPRIV.T = 'AGENTS'

Or, if there is a join ID of 5: \

:$.NOTBLPRIV.T = 'AGENTS.5'

Tip: To activate a PRE-FORM trigger after every query, include the line

:PREFORMQUERY = 1;

POST-FORM

POST-FORM triggers perform operations upon exiting the form (provided that the user has
made at least one change in the database). This type of trigger is useful, for example, for
updating values in the upper-level form on the basis of values specified in the sub-level form.

Example: The POST-FORM trigger in the TRANSORDER_K form includes the
following lines (among others):

UPDATE SERIAL SET KITFLAG = 'Y' WHERE SERIAL = :$$.SERIAL
AND EXISTS
(SELECT 'X' FROM KITITEMS WHERE SERIAL = :$$.DOC AND TBALANCE > 0
AND KITFLAG = 'Y');
GOTO 1 WHERE :RETVAL > 0;

This part of the trigger updates the Missing Components column in the Work
Orders form upon exiting the Issues to Kits sub-level form.

Creating your Own Triggers PDF last generated: Dec 10, 2024

Priority SDK Page 118

Error and Warning Messages

Introduction

Triggers which perform verification checks should include error message (ERRMSG) or
warning message (WRNMSG) commands. When they succeed, both these commands
generate a message. However, whereas trigger execution continues when a warning
message command is successful, it halts once an error message command is successful.

Tip: The system manager can change any warning into an error message via the Privilege
Explorer. You can find more info on the Privilege Explorer in Priority Xpert.

See also Form Triggers.

Activating the Command

To activate an ERRMSG or WRNMSG command, use the following syntax:

ERRMSG number [WHERE condition];
WRNMSG number [WHERE condition];

The number refers to the message that will be generated. For example,

ERRMSG 4 WHERE :$.TYPE NOT IN ('O','R','P');

will cause message 4 (“Specify P (part), R (raw material) or O (other).”) to appear if the part
type is not O, R or P.

Specifying the Message Content

For any given form, all ERRMSG and WRNMSG commands appearing in any trigger must
be accompanied by error and warning messages. Moreover, it is important to ensure that the
message is assigned the same number as the one referred to in the appropriate command. If
the form preparation mechanism encounters a trigger with an ERRMSG or WRNMSG
command and no message to accompany it, a warning will appear in the Warnings Report:

There is no message number X for Y form (appears in Z trigger).

If this warning is not heeded, and the form is loaded, the trigger will work normally. However,
instead of its designated error or warning message, the user will receive the above
message.

The content of each message is generally written in the Error & Warning Messages form.
Each new message should be assigned a number greater than 500. Actually, there are three
Error & Warning Messages forms that can be used interchangeably:

• the FORMMSG form, a sub-level of the Form Generator form;
• the TRIGMSG form, a sub-level of the Row & Form Triggers - Text form, which

allows you to view the contents of the Row or Form trigger that generates the

Error and Warning Messages PDF last generated: Dec 10, 2024

Priority SDK Page 119

message;
• the TRIGCLMSG form, a sub-level of the Form Column Triggers - Text form, which

allows you to view the contents of the Column trigger that generates the message.

If the message is longer than a single line, it may be continued in the sub-level of each of the
above forms.

Storing the error/warning messages in separate tables from the triggers themselves gives
them autonomous status. This is useful in two respects. First, it enables the messages to be
displayed in the Form Messages dictionary. Hence, messages for different forms can be
retrieved together, which helps the form designer to unify their style. Second, it enables
Priority’s translation facility to take the messages into account. Thus, while the contents of
triggers will remain the same, the error and warning messages that are generated by these
triggers can be displayed in another language.

In any given error or warning message, you can refer to a specific Priority* entity using a
special format: {entity_name.{ **F | R | P | M } }, where F = form, R = report, P = procedure,
M = menu. That is, you designate the entity name and type, and the entity’s title will appear
in their place. This format is useful because entity names are rarely changed, whereas titles
are rather likely to be modified in upgraded or customized versions. In this way, the most up-
to-date title will appear in your message.

Example: You can create a warning message for a trigger in the SHIPTO
(Shipping Address) form which refers to the Customers form: The shipping
address is identical to the customer's mailing address. See
the {CUSTOMERS.F} form.

If the message is an error message, the entity code will also function as a clickable link to the
relevant entity. In warning messages, only the entity title will appear, without being clickable.

Remember to check that the entity name and type have been correctly written, that is, the
entity you specified really exists.

You can also create a warning message (WRNMSG), error message (ERRMSG) or send
mail message (MAILMSG) that displays the content of a text file. Within the trigger in
question, define a variable of FILE type called MESSAGEFILE and specify msg_number =
1000000. This message number should not appear in the Error & Warning Messages form.

Example: A CHECK-FIELD trigger might contain the following code:

SELECT SQL.TMPFILE INTO :MESSAGEFILE FROM DUMMY;
SELECT 'Sample message' FROM DUMMY ASCII UNICODE :MESSAGEFILE;
ERRMSG 1000000;

General Error Messages

To assist in creating a unified language for your users, you can create error messages that
can be called from any entity. To do so, use the following syntax:

GENMSG number [WHERE condition];

To add additional general messages, open the Compiled Programs form, retrieve the
GENMSG program, and add your message in the Program Messages sub-level, following
the development rules (message number > 500).

Error and Warning Messages PDF last generated: Dec 10, 2024

Priority SDK Page 120

Require Password Reentry

In certain cases, you may wish to prompt the user to reenter their password when performing
a certain action in a field (e.g. flagging a purchase order as approved).

Note: This functionality is only supported in the Priority Web interface.

To prompt the user to reenter their password:

Create a new warning message (WRNMSG) trigger. Within the trigger in question, specify
msg_number = 1000001. This message number should not appear in the Error & Warning
Messages form. After the user makes a change to the field, a password prompt will appear,
with the following fields:

1. Username - a text field with a default value of the current user's name. Altering the
username will automatically fail the password check – the check will not be
performed and a value of 1 will be returned.

2. Password – empty password field. This field automatically hides the characters
entered (using asterisks/bullets), and its content cannot be copied to the clipboard.
By default, it is the active field when the password prompt appears.

3. OK and Cancel buttons.

The results of the password prompt are returned in a special variable PWD_RETVAL, with
the following possible values:

• 1 - Username was changed and therefore no password check was performed.
• 2 - Username is unchanged and the password was correct.
• 3 - Username is unchanged and the password was not correct.
• 4 - The user pressed the Cancel button.

Message Parameters

An error or warning message can include parameters (a maximum of three per message) —
<P1>, <P2> and <P3>. The values to be assigned to these parameters are defined in the
trigger that generates the message, by means of the system variables :PAR1, :PAR2 and
:PAR3.

Example: The CHECK-FIELD trigger for the PARTNAME column of the
PORDERITEMS form checks that the specified order item is sold by the vendor to
which the order is made:\

WRNMSG 140 WHERE NOT EXISTS /* Don't give warning for nonstandard*/
(SELECT 'X' FROM PARTPARAM WHERE PART =
(SELECT PART FROM PART WHERE PARTNAME = :$.@)
AND NSFLAG = 'Y')
AND NOT EXISTS
(SELECT 'X' FROM SUPPART, PART WHERE SUPPART.SUP = :$$.SUP
AND SUPPART.VALIDFLAG = 'Y'
AND SUPPART.PART = PART.PART AND PART.PARTNAME = :$.@);

Warning message 140 would then be: Vendor <P1> does not supply this part.
PAR1 is filled in by the appropriate vendor number.

Error and Warning Messages PDF last generated: Dec 10, 2024

Priority SDK Page 121

The variables :PAR1,:PAR2 and :PAR3 are of CHAR type. If you wish to assign a form
column variable which is of a different type to a message parameter, you will have to first
convert it to a string (use ITOA for an integer and DTOA for a date).

Example: To insert the order date into a message parameter, include the following
statement in the trigger:

:PAR1 = DTOA (:$.CURDATE, ’MM/DD/YY’)

Error and Warning Messages PDF last generated: Dec 10, 2024

Priority SDK Page 122

Sending an Email from a Program

Introduction

Mail messages are similar to error and warning messages, except that they are sent by
internal or external mail to designated recipients and can be accompanied by an attachment.
Thus, you need to define one or more users and/or e-mail addresses to which the message
is to be sent, as well as the filename (if you are sending an attachment).

Tip: Use Priority groups to define multiple users and/or e-mail addresses.

Examples:

MAILMSG 9 TO USER :NEXTSIGN WHERE :NEXTSIGN <> 0
AND :NEXTSIGN <> SQL.USER;

:EMAIL = 'johndoe@example.com';
:FILE = '..\tmp\msg.doc';
MAILMSG 5 TO EMAIL :EMAIL DATA :FILE;

See also Form Triggers.

Controlling the Appearance of Line Breaks within
a Message

Note: This feature does not support output of bi-directional languages such as Hebrew and
Arabic.

In certain cases, the message you want to send will be longer than a single line (i.e.,
message text continues into the Error/Warning Message (cont.) sub-level form). In such
cases, the message text will be broken up into multiple lines.

In order to control the appearance of line breaks within a message, include the following
string in the message:

<!--| priority:priform |-->

Priority will treat any text that follows this string as HTML code. This enables you to include
HTML tags such as line breaks in your message, affording you a greater degree of control
over the appearance of text in the message.

Example: The following e-mail is sent using the command:
MAILMSG 605 TO USER :USER;
Where warning message 605 contains the following:

Service Call request number: <P1> was updated by Customer.

and the Error/Warning Message (cont.) sub-level form contains the following:
<P2><P3> The resulting message is sent without using HTML tags:

Sending an Email from a Program PDF last generated: Dec 10, 2024

Priority SDK Page 123

Service Call request number: ILSC123456 was
updated by Customer.
Customer: CRR
Holding Company
Date&Time: 18/10/08 14:28

The second e-mail is sent using the identical command:
MAILMSG 605 TO USER :USER;
Where warning message 605 contains the string:

<!--| priority:priform |-->

And the Error/Warning Message (cont.) sub-level form contains the following:
Service Call request number: <P1> was updated by Customer.
<P2>
<P3>

After line breaks are inserted using HTML tags, the same message appears as
follows:

Service Call request number: ILSC123456 was updated by Customer.
Customer: CRR Holding Company
Date&Time: 18/10/08 14:28

Updating the History of Statuses Using MAILMSG

The MAILMSG command can also be used to update the History of Statuses
(DOCTODOLISTLOG) form, by including the following syntax in the appropriate POST-
trigger:

:PAR1 = statustype; /* the type of document whose assigned user
and status you want to record in the '''DOCTODOLISTLOG''' form */

:PAR2 = :iv; /* the autounique value of the record whose assigned
user and status you want to record in the '''DOCTODOLISTLOG'''
form */

MAILMSG 1 TO USER -2;

The parameters :PAR1 and :PAR2 are used to indicate a unique form and record from which
to retrieve the status and assigned user. The MAILMSG command generates a new line in
the History of Statuses form with the user and status currently assigned to the specified
record.

Example: To add a new line to the History of Statuses sub-level of the Sales
Orders (ORDERS) form for Order No. A00098, use the following syntax:

:PAR1 = 'O'; /* the Type defined for all records in the ORDERS
form */
:PAR2 = '15982'; /* the internal Document (ID) of Order Number

A00098 */
MAILMSG 1 TO USER -2;

You can also add this syntax to a custom POST- trigger in order to record other changes to a
form record.

Examples:

Sending an Email from a Program PDF last generated: Dec 10, 2024

Priority SDK Page 124

1. To update the status history for the Tasks form after a change in the Notes
(CUSTNOTESTEXT) form, add the above syntax to a new custom POST-
FORM trigger.

2. To do the same after a change in the Start Date of the task, add the above
syntax to a new custom POST-UPDATE trigger.

Note: This feature can only be used in a sub-level form, not in the root form. For example,
you cannot update the status history of an order from the Sales Orders (ORDERS) form.

Sending a Link to a Document using MAILMSG

You can also use the message parameters to include a link to a document in a message.

Example: Message 1 is defined as: "Here is a link to order <P1.ORDERS.F>."

:PAR1 = 'SO1212888';
MAILMSG 1 TO USER :USER;

Sending an Email from a Program PDF last generated: Dec 10, 2024

Priority SDK Page 125

Changing Column Titles Dynamically
Column titles can be set dynamically, so that they are assigned when the user enters the
form. This option is available for forms that do not have a default design, and which have a
value of T in the One-to-many column of the Form Generator.

To change the column title, use a variable made up of the form name, the title name and
"TITLE".

Example: To change the title of the "TEST" column in the "MY_FORM" form to
"New Title," write in the PRE-FORM trigger:

MYFORM.TEST.TITLE = 'New Title';

See also the FRGROUPS_DET form.

See also Form Triggers.

Changing Column Titles Dynamically PDF last generated: Dec 10, 2024

Priority SDK Page 126

Including One Trigger in Another

The INCLUDE Command

The #INCLUDE command enables you to use the same trigger more than once without
rewriting it.

To include the same trigger elsewhere, use the following syntax (note that there is no semi-
colon at the end of the statement):

#INCLUDE form_name / trigger_name
#INCLUDE form_name / form_column_name / trigger_name

When a trigger is included in one or more other triggers, the entire contents of the former are
inherited by the latter. Thus, if the CHECK-FIELD trigger for the TYPE column in the PART
form is identical to the CHECK-FIELD trigger for the TYPE column in the LOGPART form,
you could write the trigger for one column and include it in the other:

CHECK-FIELD for TYPE column in PART form:
ERRMSG 4 WHERE :$.TYPE NOT IN (‘O’,’R’,’P’);

CHECK-FIELD for TYPE column in LOGPART form:
#INCLUDE PART/TYPE/CHECK-FIELD

Moreover, you can write more statements to the latter (including) trigger which do not apply
to the former (included) trigger (before or after the include command).

In contrast, any additions to the included trigger will automatically be attached to the
including trigger as well. That is, if changes are made in an included trigger, this will affect all
forms that include it; thus, all forms involved will have to be prepared as executable files by
the form preparation mechanism.

If the included trigger is deleted, the error will be revealed during the form preparation of any
forms that include that trigger.

Tip: To view the original trigger, move to the #INCLUDE line and press F6. The trigger text
appears in the sub-level form, Row & Form Triggers – Text.

See also Form Triggers.

Using Buffers

Often, it is more efficient to include only a portion of a trigger. That is, several triggers may
share the same set of SQL statements, but each trigger also has additional statements of its
own. In such a case, a special type of trigger, called a “buffer,” should be defined. This buffer
should hold all the shared SQL statements and it should be included in any trigger that uses
this group of statements.

Example: Almost no document in the system (e.g., Goods Receiving Voucher,
Customer Shipments, Customer Returns) can be revised once it’s final. The

Including One Trigger in Another PDF last generated: Dec 10, 2024

Priority SDK Page 127

relevant sub-level forms (Received Items, Shipped Items, Returned Items) should
therefore include the same check. Thus, the PRE-INSERT trigger of all these sub-
level forms includes the same trigger that performs the check:

#INCLUDE TRANSTRIG/BUF10 /* Check CANCEL and FINAL */

Naming Buffers

A buffer may either be numbered (BUF1, BUF2, BUF3, ..., BUF19) or assigned a trigger
name that hints at its usage. Before any buffer name can be used, it must first be added to
the List of Triggers form, which can be accessed by pressing F6 from the Row & Form
Triggers form or from the Form Column Triggers form. Numbered buffers already appear in
this list.

The restrictions on buffer names are virtually identical to those of customized triggers. The
only difference is that, of course, no key strings may be used.

Nesting INCLUDE Commands

The #INCLUDE command can be nested. That is, one trigger can include another, which in
turn includes a third trigger (and so on).

Example: The PRE-INSERT trigger of the TRANSTRIG form includes many
buffers from the same form. (The TRANSTRIG form is a special form that only
contains triggers included in other forms.)

Advantages of the Wildcards

Wildcards ($ and @) are very useful when including one trigger in another. This is because
the wildcard has a relative meaning, which depends upon the form in which the trigger is
activated.

Example: :$$.DOC in the PRE-INSERT trigger of the Received Items form refers
to :DOCUMENTS_P.DOC, whereas in the PRE-INSERT trigger of the Shipped
Items form, it refers to :DOCUMENTS_D.DOC.

Error and Warning Messages

Triggers inherit not only all SQL statements from the included trigger (or buffer), but also their
accompanying error and warning messages. The scope of the messages is all the triggers
written for this form.

Checking Trigger Usage

Caution must be exercised when revising a trigger that is included in other triggers, as any
changes in the former will obviously affect the latter. You can view any triggers that include
the current trigger in the Use of Trigger sub-level form of Form Column Triggers and of Row
& Form Triggers.

Including One Trigger in Another PDF last generated: Dec 10, 2024

Priority SDK Page 128

Trigger Errors
Form preparation will fail if any major trigger errors are encountered. The main trigger errors
are:

• SQL syntax errors
• illegal or irresolvable variable types
• syntax errors in #INCLUDE commands
• #INCLUDE commands that refer to non-existent forms, form columns or triggers
• form column variables that refer to non-existent form/form column combinations

(e.g., :ORDERS.CUSTNAME, when there is no CUSTNAME column in the
ORDERS form)

• ERRMSG or WRNMSG commands that refer to message numbers not specified for
the form in question.

In addition, warning messages (without causing form preparation to fail) might be generated
when the same local variable is used for two distinct types. Even though form preparation
succeeds in this case, it is nevertheless recommended that you take care of all the problems
that generated the warning messages.

Example: The same variable name contains a value of INT type in one trigger and
a value of CHAR type in another.

Trigger Errors PDF last generated: Dec 10, 2024

Priority SDK Page 129

Form Preparation

Introduction

A form which has been constructed or revised cannot be accessed on screen until it is
prepared as an executable file. In most cases, form preparation is activated automatically
when you attempt to open an unprepared form. You can also activate it manually:

• Run the Form Preparation (FORMPREP) program (System Management →
Generators → Forms → Form Preparation), which can prepare multiple forms
simultaneously.

• Run the Prepare Form program by Action from the Form Generator for a specific
form.

Form preparation will fail if errors are encountered (and you will be referred to an Errors
Report, located in the same menu). There are several types of major errors: trigger errors,
problems with form content and problems with form display.

Examples of possible problems:

• A column in the base table’s autounique or unique key is missing from the form
• A calculated column has been assigned a width that is unsuitable for its column type

(e.g., a width of 11 for a DATE column)
• A form column is neither derived from a table column nor defined by an expression.

Note: In rare cases, the Form Preparation program fails to replace the older version of the
form. If that occurs, retrieve the form in question in the Form Generator and run the
Reprepare Form program by Action.

Loading a Form

The Load Form program (System Management → Generators → Forms) allows you to
access a form on screen without going through any menus. A similar program (Open Form)
can be run by Action from the Form Generator. These interchangeable programs are
particularly useful during the form’s development stages.

Note: An unprepared form cannot be opened in this manner; it must first be prepared.

When loading a form, the designated form may not be linked to any upper-level form. To
access a sub-level form, load the most upper-level form in its tree (the root form) and use
that form to access sub-level forms.

Example: To access the ORDERITEMS form, load the upper-level ORDERS form
and then access the sub-level form via a record in the Sales Orders form.

Form Preparation PDF last generated: Dec 10, 2024

Priority SDK Page 130

Help Messages
Important: Help messages, regardless of type/location, should not exceed 2000 characters
in length.

Forms

You can use the Form Generator to create on-line help messages for an entire form or
specific form columns. Form help is specified in the Help Text form, a sub-level of the Form
Generator form; column help is designated in the Help Text form, a sub-level of the Form
Columns form. Whenever help messages (for the entire form or for any column) are added or
modified, the date and time of this revision appear in the Help Date column of the Form
Generator form.

Note: Any modifications of help messages, including the creation of new ones, will not be
seen by the user until the form in question has been reprepared. Unlike other changes to the
form, modifications of help texts require you to remove the existing form preparation and
execute it again. To do so, run the Reprepare Form program by an Action from the Form
Generator.

Reports

Similarly, you can use the Report Generator to create on-line help messages for an entire
report and/or any report column appearing in its parameter input screen. Help for the report
itself is specified in the Help Text form, a sub-level of the Report Generator form; input
column help is designated in the Help Text form, a sub-level of the Report Columns form.
Whenever help messages (for the entire report or for any input column) are added or
modified, the date and time of this revision appear in the Help Date column of the Report
Generator form.

Note: Do not write help for any report which is activated from a procedure; instead, write the
help for the procedure.

Procedures

Finally, you can use the Procedure Generator to create on-line help messages for an entire
procedure and/or any parameter appearing in its input screen. Help for the procedure itself is
specified in the Help Text form, a sub-level of the Procedure Generator form; parameter help
is designated in the Help Text form, a sub-level of the Procedure Parameters form. If you use
a procedure parameter of type HELP, the contents of the help message will appear as part
of the input window (rather than after clicking the help button). Keep in mind that the space in
the input window is more limited than that of a help popup, so the message should be kept
short.

Whenever help messages (for the entire procedure or individual parameters) are added or
modified, the date and time of this revision appear in the Help Date column of the Procedure
Generator form.

Help Messages PDF last generated: Dec 10, 2024

Priority SDK Page 131

Referring to Other Entities

Often, you will want to refer to other Priority entities in your help text. As entity titles are
easily changed (even by the user), whereas their names are relatively fixed by the time you
begin to create help messages, Priority offers a mechanism for referring to an entity by
name in the help text; its current title will consequently be displayed when the help is called
up by a user.

To refer to a specific entity in a help message, designate the entity name followed by a
period and its type (as illustrated in the above example), where F=form, R=report and
P=procedure, enclosing all of this in curved brackets.

Help Messages PDF last generated: Dec 10, 2024

Priority SDK Page 132

Reports

Introduction

Reports are constructed and modified in the Report Generator form and its sub-levels
(System Management → Generators → Reports).

An easy way to create a custom report is to copy an existing one (using the Copy Report
program in the same menu) and then make revisions to it. In fact, this method is mandatory if
you want to change the sorting or grouping of columns.

Reports selectively display data stored in the database, as well as simple calculations of that
data (e.g., sum totals). They can also display complex calculations of data, defined by SQL
expressions. Finally, sophisticated operations can be performed on data by including the
report in a procedure — i.e., a batch of executable steps that are carried out in a predefined
sequence. In fact, most Priority reports are embedded in procedures. To simplify things, the
examples referred to here (e.g., ORDERSBYCUST) will be treated as simple reports, even
though some of them are actually processed reports activated by a procedure.

You can create standard and tabular reports (tables). Reports and tables can display the
same data, but in different formats. Reports tend to be more detailed, displaying a relatively
large amount of information. Tabular reports are used to show summarized information.

A report is characterized by:

• a unique name and title
• a set of report columns derived from the columns of one or more tables in the

database
• calculated columns (optional), whose values are determined by other columns.

Note: If your system uses an SQL or Oracle database, HTML documents and reports are
saved in Unicode format, using UTF-8 character encoding. If your system uses the Tabula
database, documents and reports are saved in ASCII format.

Copying Reports

The Copy Report program copies:

• all report columns and their attributes
• all expressions for calculated columns
• any designated target forms
• the output title, if there is one.

It does not copy report tables, or links to procedures, menus or forms.

When assigning a name to the new report, be sure to follow the rules designated below. After
the program is completed, make any needed revisions to the copy.

Reports PDF last generated: Dec 10, 2024

Priority SDK Page 133

Report Attributes

To revise a report’s attributes (or to open a new report manually), use the appropriate
columns in the Report Generator form.

Report Name

As with forms, the report name is a short name by which the report is identified by the
system. There are certain restrictions (which also apply to report column names):

• Only alphanumeric values (uppercase and lowercase letters and digits) and the
underline sign may be used (no spaces).

• The name must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form — System Management → Dictionaries).
• The name assigned to any newly created report must include a common four-letter

prefix (the same one you use for all entities that you add to Priority for the customer
in question; e.g., XXXX_ORDERS).

Report Title

The report title is the means of identifying the report in the user interface. The designated
title will appear in menus, at the top of the screen when the report is displayed, and at the top
of each page of the printed report.

This title is restricted to 32 characters. You may, however, designate a longer title, which will
appear on screen and in printouts, in the Output Title sub-level form.

Space considerations are not the only grounds for using an output title. You might also
decide to use one simply to distinguish between the menu item and the report heading. For
example, you might find it useful to include the word “Table” in the menu, but you would not
wish it to appear in the actual report heading.

Note: If you change the report title after you have designated an output title, you will receive
a warning message. This is to ensure that the output title is revised as well.

Application

Each report is assigned an application, which is used to classify reports by the type of data
they access (e.g., FNC for the Financials module). If the report is copied, the application is
taken from the original report. When opening a new report manually, specify a code word
that aids in retrieval.

Module

Each report belongs to a given Priority module. As different modules are included in each
type of Priority package, users are restricted to those reports whose modules that have
purchased. If the report is copied, the module is taken from the original report. When opening
a new report manually, specify “Internal Development”; this way you (and your customers)
will be able to use the report no matter which modules of Priority have been purchased.

Reports PDF last generated: Dec 10, 2024

Priority SDK Page 134

Report Columns

Report Column Attributes

Report columns inherit the name, title, type, width and decimal precision (in the case of
REAL or INT columns) of the table columns whose data they display. With the exception of
column name, all these report attributes may be modified, where desired.

To record attributes for report columns, use the appropriate columns in the Report Columns
sub-level of the Report Generator form, unless otherwise designated.

See also Reports.

When Creating a New Report

When you are creating your own report manually (and not copying an existing report), you
need to decide upon the table columns that will make up the report. These columns may be
derived from several different tables. The columns that make up a report can be assigned
automatically or manually.

To add report columns automatically, enter the Report Tables sub-level of the Report
Generator form, and specify all tables from which data are derived.

Tip: Move to the Table Name column and press F6. You will access the Table Dictionary, in
which you can retrieve table names.

The order in which report tables are specified will affect the positions of the derived report
columns. The columns of the first table to be designated will receive the first positions, those
assigned to the second table will receive the next ones, and so on. Within each table,
columns will be positioned in order of their insertion into the table. These column positions,
which determine the order in which report columns are displayed, may be revised, where
desired. You can also delete the records (from the Report Columns form) for those table
columns which you do not need in the report, or you can hide unneeded columns.

Example: There is no need for the following columns in the CUSTOMERS table to
appear in a report for sales orders: address, city/state, zip code, phone number,
price list, internal customer number.

Note: See Rules for Customizing.

Adding Report Columns

To assign report columns yourself (whether to a new report or to an existing one), enter the
Report Columns form and specify column position, column name and table name. As with
forms, the order in which columns appear in the report is determined by their relative position
(an integer). Integers determining column position need not be consecutive. The column
assigned the lowest integer will appear first, that with the next highest integer will appear
second, and so on.

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 135

Tip: Press F6 from the Column Name column to access the Column Dictionary or press F6
from the Table Name column to access the Table Dictionary. The Columns sub-level form of
the Table Dictionary displays all columns that belong to a given table.

Certain restrictions apply to report column names:

• Only alphanumeric values (uppercase and lowercase letters and digits) and the
underline sign may be used (no spaces).

• The name must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form — System Management → Dictionaries).
• The name assigned to any newly created report column must include a common

four-letter prefix (the same one you use for all entities that you add to Priority for
the customer in question).

Column Numbers

Each report column is identified by its unique column number, which is assigned
automatically by the system. This number is used to identify the column in expressions.
When report columns are added automatically (in a new report), the column with the lowest
position receives column number 1, the next column is numbered 2, and so on. When
columns are added to the report manually, the column number is copied from the column
position. If another column already has that ID number, the new column will be assigned the
next available number. Changes in column position do not affect column numbers.

Note: In order to prevent future Priority releases from overwriting any newly added columns,
manually assign them a column number of at least 500 (and then change the position). For
more details, see Rules for Customizing.

Join Columns

Join columns limit the records displayed in the report so that the appropriate data is
displayed. When a new report is created, if no join columns are added, the user will receive
all possible combinations of data from the included table columns.

Example: If no join columns are displayed in a report based on the ORDERS,
ORDERITEMS and CUSTOMERS tables, then the report will display Order 1000
for all customers and all ordered parts, regardless of whether there is any
connection between these pieces of data. To obtain the desired combination of
data – i.e., Order 1000 for Customer P600 (North Island Stars) – you have to link
the order’s internal customer number to the internal customer number in the
CUSTOMERS table, by means of join columns and their tables.

Both the Join Column and its Join Table must be specified.

Note: If you have added a column to a standard report and the join is to a new table, assign
a Join ID greater than 5. For details, see Rules for Customizing.

Special Joins

There are two special types of joins:

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 136

• multiple joins — when two or more report columns are joined through the same
table column

• outer joins — that allow for unmatched rows between the base and join tables.

Column IDs and Join IDs are used to distinguish between two joins made through the same
table column. A good example of a multiple join is found in the TOTWARHSBAL (Total Part
Inventory) report, which displays inventory in both standard part units and in factory units.
The former unit is stored in PUNIT in the PART table and the latter is stored in UNIT in the
same table. Both are joined to the UNIT table. To distinguish between the two, PUNIT is
assigned a Join ID of 1 and UNIT is assigned a Join ID of 0.

Just as a distinction must be made between the two joins, so, too, must a distinction be
made between the report columns that are imported through each join. For instance, the two
types of units are imported from the same table column: UNITNAME from the UNIT table.
The factory unit must be imported through join 0, whereas the standard unit must be
imported through join 1. Thus, the former is assigned a Column ID of 0, whereas the latter is
assigned a Column ID of 1.

Important note: When creating your own multiple joins, use a join ID and column ID greater
than 5.

As opposed to regular joins, an outer join allows for unmatched rows between joined tables.
To designate the outer join, add a question mark (?) in the relevant Column ID or Join ID
column, next to the number of the ID. The decision as to where to put the question mark
(column ID? join ID?) depends on where the null record is expected to be encountered. If it is
in the table from which the report column is derived (i.e., the one appearing in the Table
Name column of the Report Columns form), then add the question mark to the column ID. If,
on the other hand, the null record is expected to appear in the join table, attach the question
mark to the join ID. In the case of an additional join between the outer join table and another
table, the question mark should appear in each of these join IDs.

Example: In the WWWIV_1 report, which creates a header for printouts of various
invoices, there is a join to the NSCUST table, which stores revised customer
names (used mainly for walk-in customers) for all types of documents. Since not all
invoices include revised customer names (but rather use the name stored in the
CUSTOMERS table), there is an outer join between the INVOICES table and the
NSCUST table via the IV column in both tables.
Note: As the NSCUST table is also used for other kinds of documents, the key for
that table consists of IV and TYPE, and there is a condition on the TYPE column
that distinguishes between invoices, orders, documents, etc. Nonetheless, it is
enough to define only the IV column as the outer join.

Note: Outer-joined tables are accessed after regular join tables.

Report Output

You will not always wish all columns assigned to the report to be displayed during report
output. For instance, there is generally no reason to display internal numbers. Hence, the
CUST and ORD columns from the ORDERS table are not displayed in the
ORDERSBYCUST report.

To prevent output for a given report column, flag the Hide column.

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 137

User Input

To create a parameter input screen, flag the Input column for each column to appear in the
screen. If you want the input to be Boolean (Y/N) and appear as a check box, also specify B
in the Don’t Display 0 Val column. This only applies to a CHAR column with a width of one
character.

To allow the user the option of defining query conditions, a parameter input screen,
comprised of certain report columns, is created. While this screen can theoretically include
any report columns, it is advisable only to include those columns which the user will find
helpful.

Example: The input screen for the ORDERSBYCUST report is made up of:
customer number, customer name, order number and part number. Thus, by
specifying “CA001” in the Customer input column, the user will obtain only those
orders placed by that customer.

Predefined Query Conditions

Besides creating a parameter input screen, in which the user has the option of stipulating
query conditions, you can also define query conditions yourself. These conditions will hold
whenever the report is run. Of course, the user can stipulate query conditions in addition to
your predefined ones.

Use the Expression/Condition column of the sub-level Report Column Extension form to set
query conditions. If the condition is too long to fit in that column, continue in the sub-level
form, Expression/Condition (cont.). Once the Report Column Extension form is exited, a
check mark appears in the Expression/Condition column of the Report Columns form. This
flag makes it easy to spot any report column with a condition.

Conditions are written in SQL and must begin with a comparative operator (<, >, <=, >=, <>,
=). Only records that comply with the prescribed condition will appear in the report.

Conditions and expressions have a maximum length of 3000 characters.

Example: The TRANSPARTCUST (Customer Shipments) report includes a
condition for the OTYPE column from the DOCTYPES table: = C (so as to limit the
report to sales transactions, excluding purchase transactions).

Accessing a Related Form

One of the ways to input data is to access a target form (by pressing F6 twice). Thus the
target form for the Customer Number column would be the Customers *form, whereas the
target from the *Order Number column would be the Sales Orders form. Such target forms
are also accessed when the user clicks on a link within a displayed report.

As with target forms reached from forms, the target form in question must always meet the
following conditions:

• it must be a root form (have no upper-level form of its own).
• its base table must include the column from which the user originated.

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 138

Generally speaking, the user accesses the default target form — the single form in the
application which meets the above conditions and which shares the same name as the
column’s base table. However, there are several ways to override this default, so that the
move will be to another root form based on the same table:

• by designating a main target form (type M in the Zoom/International column of the
Form Generator form for the form in question);

• by designating an application target form (type Z in the same column);
• by designating a form as a target for this particular report column (specify the name

of the relevant form in the Target Form Name column of the Report Column
Extension sub-level of the Report Columns form).

The last option overrides all other target forms, and the application target overrides the main
target form.

Note: To disable automatic access from a given column, specify the NULL form as the target
form in the Report Column Extension form.

Dynamic Access

Sometimes you want the target form to vary, based on the data displayed in a given record.
For example, in the AGEDEBTCUST report, the target form of the Invoice column is the
relevant type of invoice (e.g., AINVOICES, CINVOICES).

In order to achieve this, for the report column in question, record the following settings in the
Link/Input tab of the Report Columns-HTML Design sub-level of the Report Columns form:

• Link/Input Type = P
• Return Value Name (:HTMLACTION) = _winform

• Return Value Column# (:HTMLVALUE) = the number of the column containing the
ENAME of the target form.

Note: The column with the ENAME of the target form must have a Sort value.

• Internal Link Column# = same as :HTMLVALUE above.

Accessing from a Column That is Not a Unique Key

Sometimes you want to link to a form from a report column which is not part of the unique
key. For example, you may want to link from a Part Description column to the Part Catalogue
form, or from a Details column to the Sales Orders form.

In order to achieve this, for the report column in question, record the following settings in the
Link/Input tab of the Report Columns-HTML Design sub-level of the Report Columns form:

• Link/Input Type = P
• Return Value Name (:HTMLACTION) = _winform

• Return Value Column# (:HTMLVALUE) = the number of the column containing the
key of the target form.

Note: The column with the key of the target form must have a Sort value.

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 139

• Internal Link Column# = leave empty.
• Target Form (Choose) = the name of the target form.

Writing a New CHOOSE-FIELD or SEARCH-FIELD Trigger for a
Report Column

When a column is defined is an input column, if the column has a target form and that form
has CHOOSE-FIELD or SEARCH-FIELD triggers, those triggers will be imported to the
report input screen. You may want to write a specific CHOOSE-FIELD or SEARCH-FIELD for
the report. The same restrictions that apply to form trigger names apply here as well.

To design a new trigger, use the Field Triggers form (a sub-level of Report Columns).

Special Report Columns

You can use report columns to display special values by using the Report Columns-HTML
Design sub-level of the Report Columns form. For example, you can display addresses in
Google Maps; pictures; or QR codes.

Displaying an Address in Google Maps

You can define a column that will appear in the report as a link to Google Maps, which will
bring up the relevant address.

In order to achieve this, for the report column in question, record the following settings in the
Link/Input tab of the Report Columns-HTML Design sub-level of the Report Columns form:

• Link/Input Type = Q
• Return Value Name (:HTMLACTION) = any value (do not leave empty)

• Return Value Column# (:HTMLVALUE) = the number of the column containing the
address to be retrieved.

Note: This can be a hidden column provided it has a Sort value.

Example: See column #60 in the WWWORDFORM2 report.

Displaying QR Codes

You can define a column that will appear in the report as a QR code (a 2D bar code).

In order to achieve this, for the report column in question, record the following settings in the

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 140

Picture tab of the Report Columns-HTML Design sub-level of the Report Columns form:

• Picture = Q
• Width [pixels]= Determined by the amount of data encoded
• Height [pixels] = Determined by the amount of data encoded

Note: The width and height should be equal, as QR codes are square shaped and setting
different values will cause image distortion.

Example: See column #190 in the WWWIV_5 report.

22.0

You can now encode the contents of unicode text files as a QR code. To do so, specify a
lowercase q in the Picture field (rather than an uppercase one). The column contents should
be the unicode text file you want to encode. The file to encode can be stated explicitly or as a
variable from the printing program.

Example: See column #10 in the QRCODE report.

The unicode file can not exceed 1663 characters in length. While this is smaller than the
maximum theoretical character length of QR codes (4296 characters), it allows for a high
correction level, which makes the code readable in less than optimal conditions, and for
support for unicode characters instead of just ASCII.

Updating Custom Printing Programs with QR Codes

Note that prior to version 22.0, several printing programs used a custom bypass (EXECUTE
QRCODE) to exceed the width limit on QR codes defined as Q in the Picture field. With the
new encoding method, this custom bypass is no longer supported.

If you created custom printing programs that are based on copies of standard programs that
used this bypass, you must adapt your custom programs to use the new encoding method.

You can locate programs that use EXECUTE QRCODE by running the following code in the
SQL Interperter:

SELECT E.ENAME, E.TITLE, P.POS, PT.TEXT, PT.TEXTORD, E.TYPE
FROM PROGRAMSTEXT PT, PROGRAMS P, EXEC E
WHERE PT.TEXT LIKE '%EXECUTE QRCODE%'
AND PT.PROG = P.PROG
AND P.EXEC = E.EXEC
ORDER BY 1, 3, 5
FORMAT;

Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 141

Organizing Report Data

Introduction

Priority enables you to organize the data displayed in reports. You can ensure that records
are distinct (i.e., prevent the multiple appearance of identical records); you can sort data
according to one or more columns; you can group data; you can place certain columns in a
header; and you can perform certain functions upon the members of a group.

Distinct Records

Sometimes, a report will generate the same records more than once. Take the case of the
ORDDELAY report, which displays all sales orders that meet two conditions:

• they have not been fully supplied to the customer (at least one order item is still
due); and

• the due dates of those items have already passed.

Hence, an order will be displayed if the balance of at least one of its order items is greater
than 0 and its due date is prior to today’s date. As several items in a given order may have a
balance greater than 0, the same order can appear more than once in the report. To prevent
the repeated appearance, you must indicate that records should be distinct.

Flag the Distinct column of the Report Generator form.

Sorting

Sorting data in reports is similar to sorting records in forms. Here, too, you can assign sort
priorities to one or more columns, and you may designate the type of sort (in the Report
Columns form). The records in a given report will be sorted first according to the data in the
column with the highest sort priority; then according to the data for the column with the next
highest sort priority; and so on. Sorts will be performed in ascending order, unless a different
sort type is specified (the other options are descending sort, alphanumeric ascending and
alphanumeric descending; for details, see Sorting Data).

Notes:

• It is possible to sort data according to a column which does not appear during report
output.

• Do not change the sorting of a standard report. Instead, copy the existing report and
revise the copy to suit your needs.

Grouping

Displayed columns are often organized into groups. When you group records together, you
can perform certain operations on the group as a whole.

Example: A report displaying sales orders groups data by customer and order

Organizing Report Data PDF last generated: Dec 10, 2024

Priority SDK Page 142

number. Thus, all orders from the same customer are displayed together, and
details are presented for each order in turn. Sales totals can then be calculated for
each subgroup (i.e., order) and group (i.e., customer).

The columns that define the group (order, customer) are called “Group by” columns. From
one group to another, identical values are not repeated. It is therefore advisable to group by
any columns which will otherwise repeat the same values. For instance, the customer name
will not change until there is a new customer number. Thus, you should group by these
columns. If you do not, the same customer name will be repeated for each order of this
customer.

Grouping also affects the collapse/expand functionality of reports. For each grouping level,
the report shows collapse/expand buttons (as + or - symbols). The user can use these
buttons to expand or collapse sections of the report based on the grouping.

Assign any “Group by” column an integer in the Group by column of the Report Columns
form. Integers need not be consecutive, but the first “Group by” column should be assigned a
value of 1. All “Group by” columns from the same table should share the same integer; they
constitute a single “Group by” set. Records will first be grouped by the set with the lowest
integer, then by the set with the next lowest integer, and so on.

Notes:

• Grouping also affects output in tabular reports.
• Do not change the grouping of a standard report. Instead, copy the existing report

and revise the copy to suit your needs.

Headers

“Group by” columns can either be positioned at the leftmost side of the report, or they can be
placed in report headers, at the top of each group. The latter option saves on horizontal
space, enabling you to display more report columns.

If you decide to use headers, always place the first “Group by” set in the header. You can
then decide whether to also include the second “Group by” set, the third set, and so on.

To place a “Group by” column in a header, specify either H or h in the Header column of the
Report Generator form. Specify a capital H whenever you wish to begin a new line in the
header. Specify the lower case h when you wish to continue on the same line. Both the title
of the “Group by” column (e.g., Customer Name) and the value of the column (e.g., CRR
Holding Company) will appear in the header. If you want to display the value only, add a
semicolon to the left of the revised column title (e.g., ;Customer Name).

Display of Grouped Records

As mentioned above, identical values are not repeated from one group to another. However,
you can force repetition of identical values, if you so desire. You can also add blank lines
between groups or even start each group on a new page.

• To repeat values, specify 1 in the Repeat Group (1) column of the Report Columns
form for the first “Group by” set (Group By = 1).

• To start a new page for each group, specify -1 in the Skip Lines column for the first

Organizing Report Data PDF last generated: Dec 10, 2024

Priority SDK Page 143

“Group by” set.

Note: When multiple columns are included in the same "Group by" set, a new page
can only be started for the first column in the set.

• To let the user decide whether to add a page break before each group, use the
system variable :GROUPPAGEBREAK in the procedure that runs the report. For
example, see the PBR input parameter in the ACCOUNTS procedure.

For documents only, to add blank lines after the group, specify an integer (up to 10) in the
Skip Lines column for the first “Group by” set.

Financial Reports: Distinguishing Between Credit
and Debit Balances

When you create a report that displays financial balances (such as a General Ledger report),
there is a need to distinguish between credit and debit balances, by placing one within
parentheses. Some users prefer to view debit balances in parentheses; others prefer credit
balances. In Priority, it is the value of the CREDITBAL system constant which determines
whether debit or credit balances will be enclosed in parentheses. However, these
parentheses will only appear in a column that is flagged as a financial balance column.

Note: If you flag the column for a value of type CHAR, the report should not be exported to
Excel. Excel will not be able to interpret the column and output a blank worksheet instead.

Group Functions

If records have been grouped, then the data in any column which does not define the group
may undergo one of several group functions (determined by the value appearing in the
Group Func. column of the Report Columns form):

• Totals can be calculated for each group (Group Func. = S for the column to be
totaled).

• Sub-totals can be calculated for any portion of the group (Group Func. = R for the
“Group by” column in question).

• Totals can be calculated for the entire report by designating T in the Group Func.
column.

• Both group totals and the entire report total can be displayed. Specify B instead of S
or T.

• You can repeat the previous value of a string (Group Func. = R for the column
whose data is to be repeated).

• Cumulative balances can be calculated from one line to the next, within each group
(Group Func. = A). This is useful, for example, in a General Ledger report, which
displays credit and debit balances that are updated for each displayed financial
transaction. In this case, you would calculate cumulative balances for the Balance
column.

• Complex total functions can be created for the group (Group Func. = s, t, b for the
column to be totaled) by designating F in the Col. Func column of the Report
Columns form. For example, see column 180 in the INCOME_BUDGETS report
(Budget P&L - Summary).

Organizing Report Data PDF last generated: Dec 10, 2024

Priority SDK Page 144

Note:The expression must reference a calculated report column that has been
defined in the Report Column Extension sub-level form (expressions in the
Expression/Condition (cont.) sub level form will not be taken into account). The
Column Type of the calculated column must be REAL.

• A constant value (Group Func. = C) can be added to the cumulative balance. For
instance, the value appearing in the Opening Balance column can be added to each
figure appearing in the Balance column.

Note: There is one other group function (H) that applies only to tabular reports (see below).

Operations on Report Columns

Several functions can be performed on an individual report column. Depending on the value
specified in the Col. Func.column of the Report Columns form, you can obtain:

• a sum total (Col. Func.= S)
• an average (A)
• a minimum value (I)
• a maximum value (M)
• a complex function (F) (defined in the Report Column Extension sub-level).

When you specify a column function, only the result of the operation is displayed. That is,
values for a number of lines are compressed into values appearing in a single line. For
instance, with respect to a sum total, the same information that was detailed for a given
group is summarized into a single value.

Example: The AGEDEBTCUST2 report (Daily Aged Receivables) makes use of
the S column function to summarize the amounts owed (in the Cum. Sum
Outstanding and Sum columns).

Note: You can combine column and group functions.

Additional Sub-totals in Reports

To include sub-totals in a report, add a hidden column with the title #ACCTOTAL. This will
add a sub-total up to a specific point in the report.

If you want to display positive values in the report, but to treat them as negative values in the
calculation of totals, add a hidden column entitled #TOTALSIGN. When calculating the total,
all lines in the report will be multiplied by this value.

Example: See the INCOME_STATEMENT report.

Organizing Report Data PDF last generated: Dec 10, 2024

Priority SDK Page 145

Refining Report Data Display

Spacing Between Report Rows

In a report with fixed positions, you can use a hidden column with the title #LINEHEIGHT
(INT type) to add a fixed amount of space between all rows of the report.

Example: See the BTLFORM100_DET report.

Width, Decimal Precision and Column Title

Report columns inherit the widths, decimal precisions and titles of the table columns whose
data they display. These values may be revised, where desired.

Note: Because of this option of modifying report attributes, any changes in the width or
decimal precision of a given table column will not affect existing report columns. In contrast,
changes in the title of the table column will be reflected in existing reports, provided that no
Revised Title has been assigned.

Widths are adjusted by deleting the inherited column width from the Width column of the
Report Columns form and specifying the desired width. Decimal precision is adjusted by
deleting the inherited decimal precision from the Display Mode column of the same form and
specifying the revised one. However, you should be very careful when changing the display
mode for an INT column. Finally, inherited column titles are overridden by specifying a new
title in the Revised Title column of the same form.

Note: Whereas a decimal precision of 0 (for a REAL column) creates varied precision in a
form, it rounds off the real number to an integer in a report. Thus, you may wish to change
decimal precision for any REAL column with a precision of 0.

Date Displays

Dates may be displayed in a variety of formats. First of all, the user will see dates according
to either the American (MM/DD/YY) or European (DD/MM/YY) convention, depending on the
language which is being used. Most examples in this manual are in American date format.

In addition, date formats are determined by the display mode and width assigned to the
report column. You must ensure that there is sufficient column width for the display mode you
have chosen. For instance, to display the day of the week alongside the date, specify a
Display Mode of 1 and a Width of at least 12. To display time as well as date, specify a
column width of between 14 and 19, depending on the display mode. Finally, you can
designate a date format of your own via a calculated column (see below).

Non-display of Zero Values

You have the option of displaying or withholding the display of zero values with respect to
TIME(00:00), INT(0) and REAL(0.0) columns. Depending on the value specified in the Don't
Display 0 Val column of the Report Columns form, you can choose to:

Refining Report Data Display PDF last generated: Dec 10, 2024

Priority SDK Page 146

• display zero values in all columns (default);
• leave the report column blank in case of zero values (Y);
• when using a group function to calculate group and/or report totals, leave both

report columns and totals blank when value is zero (A).

If a column contains all NULL values for the report, it will be omitted. For cases where you
want to force the column to show even if all the values are empty, use a ternary expression
to show a default NULL value when there is no value stored in the database. For example, if
we want to show the Remarks for a sales order:

(ORDERS.DETAILS <> '' ? ORDERS.DETAILS : ' ')
/* ' ' is a non-breaking space in HTML, and can be
used as a null value for CHAR column */

Displaying HTML Text in Reports

There are several types of reports that can display HTML text:

• A fixed component report that displays only text (e.g., WWWORD_4).
• A fixed component report in which all fields but the text appear in the first line as

“Group By” fields, and the text appears in the second line (e.g., CUSTNOTESSUM).
• A tabular component report in which all fields but the text appear as "Group By"

fields, and the text appears in the second line under the column title (e.g.,
WWWORD_2X). In such a case, the following conditions must be met:

◦ A join of the DAYS table with the expression DAYS.DAYNUM BETWEEN 0
AND 1.

◦ A real join of the text table when DAYS.DAYNUM = 1; a join of the zero
record in the text table when DAYS.DAYNUM = 0.

◦ Inclusion of an expression field (width = 68) that displays the title when
DAYS.DAYNUM = 0, and displays the text when DAYS.DAYNUM = 1.

HTML Design

Various options are offered for revising the default HTML design of reports. Some affect
specific report columns, while others affect the entire report. This facility is particularly useful
when you want to enhance the headers of printed documents (e.g., the way the company
name, address and date appear in the WWWLOGO report) or any other one-record report.
The following describes a number of the simpler, more useful options.

To design individual report columns, use the Report Columns-HTML Design sub-level of the
Report Columns form.

• Design tab: You can change the font and/or font color of a specific report column, as
well as determine its background color. This can be defined directly in the report, or
indirectly, by designating another report column whose value determines the font or
color. For example, use the Font Color Def. Column to specify the Col. Number of
the report column whose value sets the font color. If the designated report column is
hidden, that column must have a value in the Sort Priority column.

• Location tab: The default HTML design creates a regular report, with a title at the
head of each vertical column. You can use the fields in this tab to divide the page
into cells and to determine how each column is positioned within a cell (for more
details, see Displaying the Document).

Refining Report Data Display PDF last generated: Dec 10, 2024

Priority SDK Page 147

◦ Indicate the number of the row(s) and column(s) in which the field will be
located.

◦ Designate the percentage of the Column Width when the field should not
take up the entire cell.

◦ Choose a type of Title Design, if desired. For instance, if you want a
different font for the column title (bold type) than for the displayed value
(regular type), specify D and define the title's font in the sub-level form.

◦ Select one of the available Data Display options to determine how the field
will be separated from the previous one. Or choose W to prevent line
breaking of the displayed field value when there is insufficient room for all
columns on the page.

◦ Use the Horizontal Align and Vertical Align columns in the Display tab to
determine how the field is positioned within its cell.

• Picture tab: You can use a specific report column to display a picture. Select the
appropriate value in the Picture column and define the picture's width and height in
pixels. Alternatively, you can determine the picture to be displayed based on other
data appearing in the report (specify D in the Picture column and use the Dynamic
Picture Definition column).

To affect the design of the entire report, use the HTML Definitions sub-level of the Report
Generator form.

• Outside Border/Inside Border tabs: Use the columns in these tabs to change the
definitions of report borders, including space between boxes (columns or cells).
Outside borders usually separate data between groups (e.g., in a report of orders
per customer, they separate data for different customers). Inside borders usually
separate data within a group (e.g., customer number and customer name).

• More Defs tab: You can define the number of columns to appear on each page, as
well as indicate whether the report title will be displayed. The former feature allows
you to display several reports next to each other (each appearing as a separate
column on the page).

Example: For border definitions, see the WWWORD_2 report. For use of the
Design and Location tabs, see column #50 in the same report. For inclusion of a
picture, see column #170 in that report.

Designing Reports Using CSS Classes

Priority reports are designed using predefined CSS classes and IDs, which are maintained
in a system file named style.htm (located in the system\html directory). This means that it is
also possible to revise the default HTML design of reports by defining additional classes and
applying them to the desired HTML object.

To do so, create a copy of the existing style.htm file (in the same directory) with the filename
style2.htm and use this file to define your custom CSS classes. The system will automatically
add the content of this file (together with the content of the style.htm file) to the header of
every HTML report generated by the system (i.e., inside the <head> </head> tags).

Important! Do not modify the standard style.htm file, as changes to this file may be
overwritten by future Priority releases. Instead, make any desired changes in the style2.htm
file only.

CSS classes can be applied to any of the following objects in Priority:

Refining Report Data Display PDF last generated: Dec 10, 2024

Priority SDK Page 148

• An entire report: Use the Class column (in the HTML Definitions sub-level of the
Report Generator form) to apply a class to the entire report.

• A specific report column: Use the Class Definition Column column (in the Report
Columns-HTML Design sub-level of the Report Columns form) to apply a class to
the current report column.

• A specific font: Use the Class column in the Font Definitions form to apply a class to
a specific font.

Example: For report definitions, see the WWWTABS2 report. For report column
definitions, see columns #5 and #108 in the same report.

Tips for Advanced Users

Setting the column width is particularly useful when you display two reports on the same
HTML page, as it helps you line up the fields in the second report directly below the fields in
the first report. To use this feature, assign corresponding columns in the two reports the
same width.

To create a larger cell, place the field in question within a number of cells, indicating the
range of rows and/or columns (e.g., line 2 to 4). These will then be combined into a larger
cell.

To include more than one field in the same cell:

1. Assign the same row(s) and column(s) to these fields.
2. For each field involved, in the Data Display column, indicate how these fields should

be situated (fields are ordered according to their position):
◦ one underneath the other (Y)
◦ next to each other, separated by commas (leave blank)
◦ next to each other, run on (N).

3. For each field, in the Title Design column, indicate how to display its title:
◦ next to the field (Y)
◦ do not display (leave blank)
◦ in a separate table cell (D). Define the location of that cell in the next sub-

level, Column Title–HTML Design.

Refining Report Data Display PDF last generated: Dec 10, 2024

Priority SDK Page 149

Calculated Report Columns

Introduction

In addition to report columns derived from tables, you can also create columns which display
data derived from other report columns. These data are not stored in or retrieved from any
database table. The value of a calculated column is determined on the basis of other
columns in the report, including other calculated columns. To refer to other calculated
columns in an expression, use their column numbers.

Example: The Days Late column (#26) in the AGEDEBTCUST2 report indicates
the number of days that have passed since payment was due by comparing
today's date (SQL.DATE8 — an SQL variable) to the payment date (column #5):
0+ (SQL.DATE8 - (#5) > 0 ? (SQL.DATE8 - (#5))/24:00 : 0)

Note the use of a question mark and colon to form an if-then-else expression.
Roughly, this means: if the difference between today's date and the payment date
is greater than 0, then divide that difference by 24 hours (to convert it into days);
otherwise, display 0.

Steps for Creating a Calculated Column

To add a calculated column to a given report, take the following steps:

1. In the Report Columns form, specify the position of the calculated column in the Pos
column.

2. Designate the column’s width in the Width column. In the case of a real number or a
shifted integer, designate decimal precision as well.

3. Specify the column title in the Revised Title column. Note that, unlike regular report
columns, which inherit titles from their respective table columns, calculated columns
have to be assigned titles. If you forget to do so, the column will remain untitled
when the report is run.

4. Enter the sub-level form, Report Column Extension.
5. Write the expression that determines the value of the column in the Expression/

Condition column, using SQL syntax. If there is not enough room for the entire
expression, continue it in the sub-level form, Expression/Condition (cont.).

6. Designate the column type (e.g., CHAR, INT, REAL) in the Column Type column of
the Report Column Extension form.

Notes:

• You can quickly view all calculated columns in a given report (identified by column
number and title). To do so, access the Calculated Columns form, a sub-level of
both the Report Column Extension form and the Expression/Condition (cont.) form.

• Once you exit the Report Column Extension form, a check mark appears in the
Expression/Condition column of the Report Columns form. This flag helps you to
spot any calculated columns in the report at a glance.

Calculated Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 150

Displaying Alternative Date Formats

You can also use a calculated column to display dates in various formats. The default is MM/
DD/YY (e.g., 01/22/92) in an American date format, or DD/MM/YY (e.g., 22/01/92) if you are
using a European date format. The DTOA (Date to ASCII) expression is used to convert
dates into another pattern (e.g., Fri, May-12-06; 12 May 2006). It is used as follows:
DTOA(table.column, ’pattern’)

Example: DTOA(ORDERS.CURDATE, ‘MMM DD, YYYY’) converts an order date
of 07/12/06 to Jul 12, 2006 (in American format). The type of such a calculated
column would be CHAR, and its width would be 12.

Note: For a list of available DTOA patterns, see ATOD and DTOA.

Condition for a Calculated Column

Sometimes you may wish to include a calculated column that has a condition. In that case,
you do not create a calculated column, as described above. Instead, add a dummy column to
the form (column name = DUMMY; table name = DUMMY) and assign it the desired
condition. The condition itself must be preceded by “=1 AND” or "= DUMMY.DUMMY AND".

Example: Column #131 in the ACCBYFNCPAT (Account Transactions by Type)
report includes the following expression for DUMMY.DUMMY:
= 1 AND (FNCITEMS.DEBIT1 <> 0.0 OR FNCITEMS.CREDIT1 <> 0.0)

That is, the report only displays a sum when either DEBIT1 or CREDIT1 is greater
or less than zero.

Conditions in a Group by Column

Suppose you want to create a report that displays the number of sales orders in a
designated time period for each customer, but only for customers with more than a
designated number of sales orders. In order to achieve this, you can specify a search
condition (e.g., HAVING COUNT(*) > :MIN) for the group:

1. Add a dummy column to the report (column name = DUMMY; table name =
DUMMY).

2. Hide the new report column.
3. Indicate the function to be performed on the column (e.g., Col. Func. = S).
4. In the Report Column Extension sub-level form, write an expression that represents

the desired condition, using SQL syntax.

In the above example, you would record "= 0 AND COUNT(*) > :MIN", where :MIN is an
input variable received by the procedure that executes the report.

If you then dump the report's query using the SQL Development (WINDBI) program, you will
see that the SQL query now includes the following conditions in the GROUP BY clause:

HAVING SUM(DUMMY.DUMMY) = 0
AND COUNT(*) > :MIN

Calculated Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 151

AND (1 = 1)

Of course, the first and last conditions are always true.

Using a Complex Function

Sometimes you will want to perform a complex operation on a calculated column (beyond a
simple sum, average, minimum or maximum).

Example: The TOTALTRANSBAL (Inventory Movement in Period) report includes
a complex function in column #81 (Avg Monthly Consumption): (SUM(#56) / (#80))

Column #56 displays Outgoing Transact'ns, while column #80 calculates the
number of months in inventory in the period.

Complex functions are defined (like all calculated columns) in the Report Column Extension
form. In addition, a Col. Func. of type F must be specified.

Calculated Report Columns PDF last generated: Dec 10, 2024

Priority SDK Page 152

Types of Reports

Tabular Reports

Reports can also be displayed in tabular form, divided into columns and rows. Such tables
succinctly summarize report data. To define a report as tabular, specify T in the Type column
of the Report Generator form.

Each tabular column displays data for the report column which has been assigned a graphic
display value of X (in the Graphic Display column of the Report Columns form).The order in
which these data appear is determined by a non-displayed column (e.g., the internal part
number) that has been assigned a graphic display value of O. This is particularly useful when
the X data display dates. If you have not assigned O to any column, then the X data will be
sorted alphanumerically. Finally, the content of the table cell is determined by the report
column (or columns) which has been assigned a graphic display value of T.

Example: In the AGEDEBT_T_C report, which displays monthly customer aging
data, the X column displays the month (Jan-06, Feb-06, etc.). In order to sort
correctly by month number, rather than month name, a hidden sort column (type O)
is used (see column #102).

Notes:

• Each group appears in a separate row in the table.
• You can save horizontal space by using vertical mode (specify V in the Table

Display Mode column of the Report Generator form).
• If only one row is displayed for the group in question, you can to choose to hide its

title (specify h in the Table Display Mode column).

Totals

The table can display row totals, sum totals (per row and group) and/or grand totals (for all
groups and all rows). This is achieved by assigning a group function to the column in
question, as follows:

• If a row total (group function = H) has been specified, each row will be totaled.
• If a sum total (group function = S) has been specified, each group and row will be

totaled.
• If a total (group function = T) has been specified, column totals will appear.
• If both a sum and a total (group function = B) have been specified, the table will

display row totals, group totals, column totals and a grand total.

Multi-Company Reports

You can define a report to display data from multiple companies (databases). In order to
create such a multi-company report, add the following columns to the report:

• A displayed column, with a Column Name of TITLE and a Table Name of
ENVIRONMENT.

• A hidden column, with a Column Name of DNAME and a Table Name of

Types of Reports PDF last generated: Dec 10, 2024

Priority SDK Page 153

ENVIRONMENT. Its Expression/Condition should be: = SQL.ENV

Example: See the ORDERSREP report.

Note:The companies displayed in the report are the ones the user has selected via Define
Multiple Companies(in the File menu).

Processed Reports

A procedure is a batch of executable steps that are carried out in a predefined sequence.
One of the steps in a procedure may be the processing of report data. Thus, any given report
may be part of a procedure. Include a report step in a procedure when the report requires
manipulations other than simple averages, sum totals, minimums or maximums. The
procedure allows for more complex operations to be performed on data. For a detailed
explanation, see Processed Reports. Generally, you include a report in a procedure via the
Procedure Steps form, a sub-level of the Procedure Generator form. You can then view that
linkage in the Procedure Link form, another sub-level of the Report Generator form.

Types of Reports PDF last generated: Dec 10, 2024

Priority SDK Page 154

Running the Report

Introduction

A simple report (one which is not part of a procedure) may be run in one of three ways:

• directly by means of a program
• via the menu to which the report is attached
• via the form to which it is linked.

Using a Program to Run the Report

You can use the Run Report program (accessed from the Reports menu) or the Run Report/
Procedure program (run as an Action from the Report Generator form) to run a report. This
method is particularly useful during the report's development stages.

Creating Menu Links

Reports, like forms, are generally accessed from menus. To position a given report within a
menu, take the following steps:

1. Enter the Menu/Form Link form, a sub-level of the Report Generator form.
2. Indicate the name of the menu in question and specify M in the Type column. The

title of the menu in question will appear automatically, to verify that you have
specified the correct menu name.

3. Specify an integer to determine the order of the report within the menu.
4. Disregard the Background Execution column. This is only relevant for reports

activated from within a form.

Note: The Menu Items form, a sub-level of the Menu Generator, serves a similar purpose.

Form Action

Like most other Priority entities, reports may be run directly from within a form. This option
may be offered in addition to or in place of accessing the report through the menus. By
linking a report to a form, it can be run and printed out directly from the form in question.
When directly activated from the form, input will be restricted to the form record on which the
cursor rests. Only columns which belong to the form’s base table serve as input data.

Running a report as an Action from within a form can take place in either the foreground or
the background. If it is in the background, the user will be able to continue work in the form
while the report is being run. Indeed, printouts of reports are generally run in the background.

To allow for running a report as an action from within a form, take the following steps:

1. Enter the Menu/Form Link form, a sub-level of the Report Generator form.
2. Indicate the name of the form in question and specify F in the Type column. The title

of the form in question will appear automatically, to verify that you have specified the

Running the Report PDF last generated: Dec 10, 2024

Priority SDK Page 155

correct form name.
3. Specify an integer to determine the order of the report within the form’s list of

Actions.
4. If the report is to be run in the background, flag the Background Execution column.

Note: The Actions form, which is a sub-level of the Form Generator form, serves a similar
purpose.

Running the Report PDF last generated: Dec 10, 2024

Priority SDK Page 156

Procedures

Introduction

Procedures are a set of executable steps carried out in a predefined order. They are often
used to create processed reports — reports that are generated following data manipulation.
Similarly, they can be used to create a document. This is a special procedure that collects
data from more than one report and displays a final file using an Internet browser (see
Documents). Another type of procedure is used to create a new document (e.g., a sales
order) on the basis of another document, by means of an interface to a form. Finally,
procedures also serve to run the SQLI program as well as internal programs, which perform
data manipulations and other tasks.

You should not create a procedure that inserts records directly into a table. Instead,
use the procedure to run an interface to a form that will insert the records. For details, see
Form Loads.

A procedure is characterized by:

• a unique name
• a title
• steps of execution (the entities/commands that are run)
• parameters.

Procedures are constructed and modified in the Procedure Generator form and its sub-levels
(System Management → Generators → Procedures).

You cannot customize an existing procedure. Rather, you must copy it (using the Copy
Procedure program in the same menu) and make revisions to the copy. The two procedures
(standard and customized) should be very similar in terms of their logic.

Note: There are some slight differences when procedures are written for the Priority web
interface; see Working with the Priority Web Interface for details.

Copying Procedures

The Copy Procedure program copies:

• all the procedure steps
• all their parameters
• all step queries and procedure messages
• any designated target forms.

It does not copy the output title, links to menus, forms or other procedures.

When assigning a name to the new procedure, be sure to follow the rules designated below.
After the program is completed, make any needed revisions to the copy.

Notes:

Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 157

• If the procedure creates reports, you may need to copy one or more of those reports
as well, using the Copy Report program.

• If the procedure runs a program, you must not make any changes to parameters
used by the program.

Procedure Attributes

To revise a procedure's attributes (or to open a new procedure manually), use the
appropriate columns in the Procedure Generator form, unless otherwise designated.

Procedure Name

The procedure name is a short name by which the procedure is identified by the system. The
following restrictions apply:

• Only alphanumeric values (uppercase and lowercase letters and digits) and the
underline sign may be used (no spaces).

• The name must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form, at: System Management → Dictionaries).
• The name assigned to any newly created procedure must include a common four-

letter prefix (the same one you use for all entities that you add to Priority for the
customer in question; e.g., XXXX_WWWSHOWORDER).

Procedure Title

The title is the means of identifying the procedure in the user interface. The procedure title
will appear in menus and at the top of any report that is output by the procedure. Procedure
titles are restricted to 32 characters. You may, however, designate a longer title, which will
appear in printouts, in the Output Title sub-level form. For a procedure that runs reports,
specify the output title for the report instead (using the appropriate form in the Report
Generator). If you specify an output title for both, then the one assigned to the report will be
used.

Procedure Type

Designate the type of procedure:

• If the procedure runs a report, specify R in the Rep/Wizard/Dashboard column.
• If the procedure runs a report but you want to prevent the Print/Send Options

dialogue box from appearing to the user, specify N in the Rep/Wizard/Dashboard
column.

• If the procedure creates a document, specify R in the Rep/Wizard/Dashboard
column and Y in the HTML Document column.

Note: See Processed Reports and Documents.

Application

Each procedure is assigned an application, which is used to classify procedures by the type
of data they access (e.g., FNC for the Financials module). If the procedure is copied, the

Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 158

application is taken from the original procedure. When opening a new procedure manually,
specify a code word that aids in retrieval.

Module

Each procedure belongs to a given Priority module. As different modules are included in
each type of Priority package, users are restricted to those procedures whose modules they
have purchased. If the procedure is copied, the module is taken from the original procedure.
When opening a new procedure manually, specify “Internal Development”; this way you (and
your customers) will be able to use the procedure no matter which modules of Priority have
been purchased.

Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 159

Procedure Steps

Introduction

To define the entities/commands in a procedure, and the order in which they are accessed,
enter the Procedure Steps form, a sub-level of the Procedure Generator form.

A procedure is composed of a set of entities and/or commands that are executed in a fixed
order. Each entity, identified by its name and type, constitutes a separate step in the
procedure. The order of execution is determined by the Step column.

Note: When modifying the order of execution, it is not sufficient to modify the value in the
Step column. You must create an identical step with a different Step value, and delete the
step that previously existed. Similarly, in the version revision you create for the modification
(see Installing Your Customizations), you must include both the step addition and step
deletion.

Step Types

There are several different types of procedure steps, each of which is a valid entity:

• a report (R), which generates a report after data processing
• a form (F), used to input data
• a procedure (P), which activates a sub-procedure
• a Basic command (B), used for parameter input, message output and flow control
• a form load interface (I), used to load data into a Priority form
• a table load file (L), used to import external data into the application
• a compiled program (type C), used to manipulate data.

Specify the name of the entity or Basic command that constitutes each procedure step (in
the Entity Name column), as well as its type.

Basic Commands

The following is a list of useful Basic commands.

• BACKGROUND (Background Execution) — Causes the remainder of the procedure
to be run in the background.

• CHOOSE (Select Parameter) — Creates a menu of exclusive options, one of which
must be chosen by the user (by flagging one of the radio buttons). This Choose
menu will not be displayed if the procedure is run as an Action from a form.

• CHOOSEF (Select Parameter) — Same as CHOOSE, except that the menu will be
displayed when the procedure is run as an Action.

• CONTINUE (Continue) — Opens a pop-up menu of two exclusive options, one of
which must be chosen by the user. The procedure will continue if the OK option is
chosen; it will halt if the Cancel option is selected. This pop-up menu will not be
displayed if the procedure is run as an Action from a form.

• CONTINUEF (Continue) — Same as CONTINUE, except that the menu will be
displayed when the procedure is run as an Action.

Procedure Steps PDF last generated: Dec 10, 2024

Priority SDK Page 160

• END (End of Procedure) — Ends execution of the procedure; generally used in
conjunction with the GOTO command.

• GOTO (Jump to Step) — Causes a jump to a designated procedure step (e.g., to
repeat the procedure, or a portion of it, following a CONTINUE command).

• HTMLCURSOR (Create HTML Document) — Declares the cursor for a document.
This step first creates a linked file that holds the records selected in the PAR input
parameter.

• HTMLEXTFILES (Attach Files) — Causes the program that prints a document to
include a flag in user input which allows the user to print attachments (stored in a
sub-level of the document) as well.

• INPUT (Parameter Input) — Inputs parameter values; in the case of user input,
creates a parameter input screen. The input screen will not be displayed if the
procedure is run as an Action from a form. In document procedures, this command
is also used (as a final step) to display the document.
Note: User input can also be defined for the SQLI program, as well as in specific
report columns in a processed report (see more below).

• INPUTF (Parameter Input) — Same as INPUT, except that the parameter input
screen will be displayed when the procedure is run as an Action.

• MAILMERGE - Used when generating documents powered by the letter generator.
• MESSAGE (Message) — Displays a procedure message on screen. The message

number is stored in an INT parameter and the message content is recorded in the
Procedure Messages form. This message will not be displayed if the procedure is
run as an Action from a form.

• MESSAGEF (Message) — Same as MESSAGE, except that the message will be
displayed when the procedure is run as an Action.

• PRINT (Print Message) — Displays on screen the contents of a file. Execution of the
procedure continues after the user confirms receipt of the message. If the file is
empty or does not exist, execution of the procedure continues uninterrupted.
Alternatively, this command displays a designated string of characters. This
message will not be displayed if the procedure is run by Action from a form.

• PRINTF (Print Message) — Same as PRINT, except that the message will be
displayed when the procedure is run by Action.

• PRINTCONT (Print Message & Continue/Stop) — Like the PRINT command,
displays on screen the contents of a file, but also offers the user the options of
continuing execution of the procedure or halting. This message will not be displayed
if the procedure is run as an Action from a form.

• PRINTCONTF (Print Message & Continue/Stop) — Same as PRINTCONT, except
that the message will be displayed when the procedure is run as an Action.

• PRINTERR (Print Error) — Displays on screen the contents of a file containing an
error message and causes procedure failure. If the file is empty, or no file exists, the
procedure continues uninterrupted.

• SHOWCOPY (Create Certified Copy) – Creates a certified copy of a document. The
command takes two parameters: the document ID and the document type (for a
financial document, IV and 'I'; for an inventory document, DOC and 'D'). It must be
followed by an END step and a BACKGROUND step. See, for example, the
IVSHOWCOPY procedure. For more on certified copies, see Special Document
Features.

• UPLOAD (Upload file to server) - Uploads a file to the server (from a known path).
Cannot be used with EXECUTE.

• DOWNLOAD (Download file from server) - Downloads a file from the server (to a
pre-specified path). Cannot be used with *EXECUTE.

• URL (Open Webpage) — Opens a webpage according to a web address stored in
an ASCII file.

Procedure Steps PDF last generated: Dec 10, 2024

Priority SDK Page 161

• WRNMSG (Warning Message) — Like the MESSAGE command, displays a
procedure message on screen. The difference is that a Cancel button appears as
well, allowing the user to halt execution of the procedure. This message will not be
displayed if the procedure is run as an Action from a form.

• WRNMSGF (Warning Message) — Same as WRNMSG, except that the message
will be displayed when the procedure is run by Action.

The following basic steps are reserved for use by Priority Software only.

• CLIENT

Procedure Steps PDF last generated: Dec 10, 2024

Priority SDK Page 162

Procedure Parameters

Introduction

To define parameters, use the Procedure Parameters form, a sub-level of the Procedure
Steps form (itself a sub-level of the Procedure Generator).

Most procedure steps incorporate parameters. These are a means of transferring arguments
from the procedure to programs or reports activated by the procedure. They also serve to
transfer information from one procedure step to another (or from the user to the procedure
step).

Example: When a program finds an error, it writes the appropriate message to a file (i.e., a
parameter in the program). The parameter is then passed on to the PRINTERR command,
which prints out its contents on screen.

Only certain steps require parameter specification (e.g., CONTINUE and END do not).
Moreover, different types of steps require that different attributes of the parameter be
defined. For instance, you need not specify type for any parameter in a CHOOSE or
CHOOSEF command, and there is no need to designate position for any parameters in a
report step.

Parameter Name and Title

All procedure parameters must be given a name. This must meet the same requirements as
the procedure name, with two exceptions: (1) there is no prefix); and (2) the parameter name
is restricted to up to three characters (e.g., DAY, MSG, AA).

The title is a short description of the parameter. When the parameter is for input purposes or
generates a Choose menu, the user will see the title. It can also be used to store a brief
message that is displayed by the PRINT, PRINTCONT or PRINTERR command.

Parameter Order

The order of parameters in a given procedure step is determined by their position (an
integer). Integers need not be consecutive; the parameter with the lowest integer will be first.
In a program, parameter position will determine the order of parameters that are passed to
the procedure.

Note: If the procedure step consists of a single parameter, it is not necessary to specify
position at all. Nor is it necessary to indicate position for parameters in a report step.

Parameter Content

There are three distinct types of procedure parameters:

• Those which are constants or variables.
• Those which are text files.

Procedure Parameters PDF last generated: Dec 10, 2024

Priority SDK Page 163

• Those which are linked files.

A parameter may be assigned a constant value or a variable in the Value column. The value
of any variable, which is identified by the prefix “:” (e.g., :DATE), must be specified earlier in
the procedure.

The content of a text file is determined by a step in the procedure (generally by a program).
This is generally a message file, which will then be printed out by a PRINT, PRINTCONT or
PRINTERR command.

Note: All temporary text files created by the system (e.g., procedure message files) are
saved in Unicode format.

A linked file is a copy of a database table that contains only certain records. This file includes
all the table’s columns and keys. The content of a linked file is input by the user via a
parameter input screen or by means of a form. Such a file is tied to a specific database table
and column by means of the Table Name and Column Name columns. The user then
retrieves specific records by specifying search criteria for the column in question, by moving
from the column in the parameter input screen to a target form and retrieving desired
records, or by retrieving data from the form that opens instead of the input screen (as a result
of a Form step in the procedure). A third possibility is to input data from a specific form
record. This occurs when the procedure is directly activated from within a given form.
Whatever method is used, a file of records is created. Data manipulations may then be
carried out on the linked file.

Parameter Type

With the exception of parameters for a CHOOSE or CHOOSEF command, all procedure
parameters must have a specified type.

• A parameter which contains a constant value must be assigned one of the valid
column types (CHAR, REAL, INT, UNSIGNED, DATE, TIME, DAY).

• A parameter that is a text file must be assigned ASCII type.
• A parameter that stores text must be assigned TEXT type.
• If the parameter is a linked file of records, you must designate one of the following

types and specify the names of the table and column to which the file is linked:
◦ Select FILE if the linked file comprises a group of records input from the

database.
◦ Select NFILE if the linked file comprises a group of records and you want

the link table to remain empty when the user enters * or leaves the field
empty.

◦ Select LINE if the file consists of a single record input from the database.

Procedure Parameters PDF last generated: Dec 10, 2024

Priority SDK Page 164

User Input in Procedures

Introduction

When the values of parameters are determined by the user, an I is specified in the Input
column (or an M, if the input is mandatory). Input does not have to be defined via an INPUT
command. You can also specify input in a CHOOSE command, a form step or an SQLI step.
In addition, in a processed report, columns can be flagged for input in the report itself (by
flagging the Input Column in the Report Columns form).

Inputting a New Value

If, during input, the user is to specify new values (not in the database), you must record a
parameter (of any type except ASCII, FILE or LINE), together with a valid width and a title. In
such a case, an equal sign (=) will appear in the first line of the column in the parameter
input screen.

You can insert a pre-set, revisable value into the input screen — for instance, the current
date (SQL.DATE8) for a DATE parameter. The user can then choose between using that
value or modifying it. To do so, specify the pre-set value in the Value column (of the
Procedure Parameters form) for the parameter in question. Of course, the designated value
must match the parameter’s data type. Alternatively, you can specify the name of a variable
(e.g., :DATE), provided that its value has already been defined (e.g., in a previous procedure
step).

The pre-set input value appears the first time the user runs the procedure. If that value is
then revised, the revised value will appear the next time the user runs it. You can, however,
ensure that the pre-set value always appears. To do so, enter the Procedure Parameter
Extension sub-level form and specify d in the Type column.

If, instead, you want the input to be Boolean (Y/N) and appear as a check box, specify Y in
the Type column (of the Procedure Parameter Extension form).

Choosing Between Several Fixed Options

If you want the user to choose between several predefined options within a given input field,
create a parameter of INT type, and record the various options in consecutive messages (in
the Procedure Messages form). Then enter the Procedure Parameter Extension sub-level
form and specify C in the Type column. Indicate the range of message numbers in the From
Message and To Message columns.

Notes:

• To use messages recorded for a different procedure, designate its name in the
Entity Name column.

• The value of this parameter can then be included in subsequent procedure steps
(e.g., as the value assigned to a GOTO command).

User Input in Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 165

Choosing Options from a List of Radio Buttons

Alternately, you can create a separate input screen of options, in which the user must flag
one of the radio buttons. To do so, use the CHOOSE command. The first parameter of a
CHOOSE command stores the result of the user’s choice. Its title appears at the top of the
pop-up menu, as its heading. It is this parameter that may be included in subsequent
procedure steps.

There are two methods for creating the radio buttons: you can define a list of additional
parameters or write a CHOOSE query.

Method 1: When you define a list of parameters, assign each one a unique constant value
(an integer), a title and a position. Titles will appear next to the radio buttons in the order
dictated by each parameter's position. The value of the option (i.e., parameter) chosen by
the user will be assigned to the first parameter.

Method 2: You can write a CHOOSE query in the Step Query sub-level form of the
CHOOSE/CHOOSEF procedure step. This is a regular SQL query with three arguments in
the SELECT clause. All arguments must be of CHAR type (convert numbers to strings using
the ITOA function.

The first two arguments in the CHOOSE query are displayed next to the radio button and the
third is the value to be assigned to the parameter. If you want to display a single value as a
description next to each radio button, use the empty string (' ') as the second argument.

Example: See the COPYPRICELIST procedure.

Note: Rules for the CHOOSE query are similar to those in CHOOSE-FIELD triggers.

Retrieving Records Into a Linked File

Another type of user input involves retrieval of records from a given database table into a
linked file. This case requires specification of Column Name and Table Name. The user can
then specify a search pattern in that column, or access a form which displays the records in
that table and then retrieve desired records.

Inputting Text Into an HTML Screen

When the procedure parameter type is TEXT, the user keys in an unlimited number of lines
in the text field, and these lines are returned to the procedure via a file linked to the
PROCTABLETEXT table.

Example:

LINK PROCTABLETEXT TO :$.TXT;
GOTO 99 WHERE :RETVAL <= 0;
INSERT INTO GENERALLOAD (LINE,RECORDTYPE,TEXT)
SELECT 2+KLINE, ‘2’,TEXT FROM PROCTABLETEXT WHERE KLINE > 0;
UNLINK PROCTABLETEXT;

User Input in Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 166

Other Input Options

Additional columns in the Procedure Parameter Extension sub-level form also affect user
input:

• To allow users to input a file attachment, specify Y in the Browse Button column. A
Windows Explorer will open in which the user selects the file in question.

Note: The parameter in question must be of CHAR type.

• To allow users to save a new file, specify S in the same column.
• To encode user input (e.g., when a password is given), flag the Hide User Input

column. Anything recorded by the user will appear as a row of ++++++ marks.

Writing a New CHOOSE-FIELD or SEARCH-FIELD
Trigger for a Procedure Parameter

When a parameter is defined as an input column, if the column has a target form and that
form has CHOOSE-FIELD or SEARCH-FIELD triggers, those triggers will be imported to the
input screen.

You can also write a specific CHOOSE-FIELD or SEARCH-FIELD for the procedure. Your
trigger can contain references to any input value specified by the user within the same
procedure step. For instance, if the procedure step contains an input parameter called CST,
its value will be stored in the :PROGPAR.CST variable. This is useful, for example, if a given
procedure step contains an input column for a Sales Rep and another input column for a
Customer, and you want the Choose list for the latter column to display only those customers
that are associated with the specified sales rep.

The same restrictions that apply to form trigger names apply here as well.

To design a new trigger, use the Field Triggers form (a sub-level of Procedure Parameters).

Accessing a Related Form

When the parameter is a linked file, the user can specify an exact value for that database
column, stipulate a query pattern for that column or access a related target form in which to
retrieve records.

In the last case, the user normally arrives at a default target form. This is the form that serves
as a “window” into the database table to which the column in question belongs (i.e., the table
specified in the Procedure Parameters form), provided that the table and form share the
same name. However, there are several ways to override this default, so that the move will
be to another root form based on the same table:

• by designating a main target form (type M in the Zoom/International column of the
Form Generator form for the form in question);

• by designating an application target form (type Z in the same column);
• by designating a form as a target for this particular parameter (specify the name of

the relevant form in the Target Form Name column of the Procedure Parameter
Extension form).

User Input in Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 167

The last option overrides all other target forms, and the application target overrides the main
target form.

Example: Specify a target form for the parameter when there is more than one
form linked to the same base table (e.g., PART and LOGPART).

The specified target form must meet two conditions:

• It must be a root form (have no upper-level forms of its own)
• Its base table must include the column from which the user originates.

Note: To disable automatic access from a given column, specify the NULL form as the target
form.

Input During Action

When a procedure is activated from within a form, input is received from the record on which
the cursor rests. That is, a linked file is created, based on the form’s base table and
consisting of that single record. This linked file is input to the procedure by the PAR
parameter. Therefore, any procedure that is activated from a form must meet the following
conditions:

1. The PAR parameter must be in the first position of the procedure’s first step.
2. It must be of FILE type.

If you want to receive additional input from the user, you must create an input screen (using
the INPUTF command) or a menu of choices (using the CHOOSEF command).

Tip: To run the same procedure from a menu, make sure that Column Name and Table
Name are also recorded.

Using a Form for Input

The content of a linked file may also be input by means of a form (procedure step of type F).
This form must be the root of a form tree. It is loaded together with all the sub-level forms in
its form tree. A form step is useful when you wish to allow the user to retrieve several records
that will serve as input, particularly when the query is complex (entailing several conditions)
or when retrieval is not through a key.

Example: See the CLOSEAIVS procedure.

User Input in Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 168

Procedure Step Queries

Introduction

To record SQL statements, use the Step Query form, a sub-level of the Procedure Steps
form (itself a sub-level of the Procedure Generator).

INPUT, SQLI, HTMLCURSOR and HTMLEXTFILES commands can be accompanied by
SQL statements that serve as step queries. Such queries are carried out after parameter
input.

Notes:

• SQLI is a procedure step that executes SQL statements.
• Statements for INPUT steps are executed after the user entered their input (input

parameters are already filled)
• HTMLCURSOR and HTMLEXTFILES are Basic commands used in creating

documents.

Error and Warning Messages

The SQL statements in step queries resemble those in form triggers. For instance, they can
generate error or warning messages (by means of ERRMSG and WRNMSG statements).
The contents of these messages are generally specified in the Procedure Messages form, a
sub-level of the Step Query form. Long messages (taking up more than one line) can be
continued in the next sub-level, Procedure Messages (cont.). Alternatively, message content
can be taken from an external file.

In any given error or warning message, you can include a message parameter (<P1>{=html},
<P2>{=html}, <P3>{=html}). The values to be assigned to these parameters are defined in
the query that generates the message, by means of the system variables :PAR1, :PAR2 and
:PAR3.

You can also refer to a specific Priority entity in the message, using the format
{entity_name.{ F | R | P} }, where F = form, R = report and P = procedure. That is, you
designate the entity name and type, and the entity’s title will appear in their place. This
format is useful because entity names are rarely changed, whereas titles are rather likely to
be modified in upgraded or customized versions. In this way, the most up-to-date title will
appear in your message.

You can also send a mail message via a step query, using the MAILMSG command.

When activating the MAILMSG command from an SQLI step in a procedure, messages are
not actually sent until the SQLI step is completed. In the interim, the MAILMSG command
stores any messages being sent in that SQLI step in a buffer. This buffer is limited to 100
messages, meaning you cannot send more than 100 messages in the same SQLI step.

If you wish to send more than 100 messages, you can bypass this limit by creating an
internal loop between procedure steps, using the GOTO Basic command. Finish the SQLI
step and, in the next procedure step, use the GOTO command to return to that SQLI step (or

Procedure Step Queries PDF last generated: Dec 10, 2024

Priority SDK Page 169

to continue to the next procedure step, once all messages have been sent). In each iteration,
up to 100 messages will be sent.

Note: Use this option carefully and avoid creating an infinite loop.

Parameter Variables

Step queries can include SQL variables that refer to specific parameters. The system defines
an SQL variable for each parameter, which stores its value
(:ProcedureName.ParameterName). Similar to the case of form variables, the procedure
name can be replaced by the wildcard “$” if reference is to the current procedure (i.e.,
:$.ParameterName).

Procedures With Heavy Processing

A single procedure can have up to 100 cursors open at the same time. To open more
cursors, you would have to close some previously opened cursors.

Important! You can use the same cursor more than once within a given procedure or form
trigger, but the declaration can be done only once. If, for example, you write a buffer that
contains a cursor, and you want to use that buffer more than once in a procedure, you must
write the declaration section in a separate buffer.

Checking SQL Syntax

You can check the SQL statements in the step query for syntax errors, prior to activation of
the procedure itself, by running the Syntax Check program by Action from within the
Procedure Generator form.

Tracking Changes in Step Queries

You can track changes to step queries once they have been included in prepared version
revisions. See Tracking Changes to Queries.

Procedure Step Queries PDF last generated: Dec 10, 2024

Priority SDK Page 170

Procedure Flow Control

Introduction

The CONTINUE, GOTO and END commands (usually together with some type of Choose
option) all affect procedure flow. In brief, they serve the following purposes:

• CONTINUE— enables the user to continue or exit the procedure (see also the
PRINTCONT command)

• GOTO— jumps to another procedure step
• Choose option — the value of the selected option is passed on to the GOTO

command, determining the step to which the GOTO jumps
• END— ends the procedure.

Continuing/Halting the Procedure

When a procedure involves heavy data manipulation or has far-reaching effects on the
database, you may wish to offer the user the option of exiting it prior to data processing. The
user may have accidentally activated the procedure, or may simply have changed his or her
mind. The CONTINUE command (without parameters) is used for that precise purpose.

Using the GOTO Command

The GOTO command, which is useful in conjunction with CONTINUE, causes the procedure
to jump forwards or backwards to another procedure step. The GOTO command always has
a single parameter whose value is the procedure step at which to continue and whose
type is INT.

Note: The value of the GOTO parameter may be a constant designated in the Value column
of the Procedure Parameters form; it may be determined by an SQL statement; or it may be
determined by the user’s choice of one of the CHOOSE options.

Activating a User-Chosen Option

You can create a procedure that offers the user several options and then activates certain
subsequent procedure steps based on the chosen option. To design such a procedure, use
the Choose functionality (via an input step of Choose items or by means of the CHOOSE
command) together with GOTO and END commands. That is, the value of the chosen option
can be used to determine the value of the GOTO command. Simply use the same parameter
name for the GOTO command and leave the Value column blank (remember to specify a
type of INT). Thus, if the user chooses the option whose value is 60, the procedure will
proceed at step 60. It will continue until an END command is encountered (or until there are
no more procedure steps).

You can also include a Choose option that simply ends the procedure, in case the user
wants to change his or her mind. This is achieved by jumping to an END command (e.g.,
step 50). Note that the END command has no parameters.

Procedure Flow Control PDF last generated: Dec 10, 2024

Priority SDK Page 171

Procedure Messages

PRINT, PRINTCONT and PRINTERR

The PRINT, PRINTCONT, and PRINTERR commands are very similar. However, whereas
the PRINT command only displays a message, the PRINTCONT command also allows the
user the options of continuing execution of the procedure or stopping. In this sense, it is
similar to the CONTINUE command. PRINTERR command causes procedure failure; thus, it
should be used to display error messages which explain that the procedure cannot be
successfully completed.

Printing a Fixed Message

In addition to their usage for printing messages from a message file, the PRINT and
PRINTCONT commands can be used to print out a fixed message on screen. To use the
PRINT or PRINTCONT command in this manner, assign CHAR type to its parameter and
specify the message to be printed in the Title column of the Procedure Parameters form.

Alternatively, you can use the MESSAGE and WRNMSG commands to display a message;
in the latter case, the user can opt to halt execution of the procedure. The message number
must be stored in an INT parameter (either via the Value column or defined in an earlier
procedure step); its content is recorded in the Procedure Messages form.

Procedure Messages PDF last generated: Dec 10, 2024

Priority SDK Page 172

Processed Reports

Introduction

One of the most common uses of a procedure is to generate a processed report— a report
whose data undergo processing prior to output. Such output may take the form of a standard
report or a table.

A procedure which generates a processed report is considered a special type of procedure.
Thus, you have to specify an R in the Rep/Wizard/Dashboard column of the Procedure
Generator form. Whenever a procedure of this type is activated, it will act like a regular
report. Indeed, there is no way for the user to distinguish between a regular report and a
processed one; they look exactly the same.

A procedure of this type is generally made up of the following steps: user input (by means of
a parameter input screen or through a form), data manipulation (SQLI step) and running the
report with processed data (the report step itself, of type R).

A report step has several parameters:

• One parameter for each of the linked files that are created during user input. These
parameters are all of FILE type, and each is assigned the name of the table to
which it is linked as its Value.

• Input parameters that are passed on from the procedure to the report query. These,
of course, are of the same parameter type they were assigned during the input step.

Unlike other steps containing more than one parameter, there is no need to designate
parameter position for a report.

Changing the Report Title

The report title can be changed at runtime in the SQLI step preceding the report step, using
the :HTMLFNCTITLE variable.

Example: See step 20 of the FRTRANS procedure.

Note:This feature can also be used in HTML documents (see Documents).

Defining Dynamic Column Titles

Report column titles can be defined dynamically. To do so, assign the column title in an SQLI
step preceding the report step.

Example: The following changes the title of column #30, so that it displays the title
from the procedure rather than what is defined in the report:

:COLTITLES = 1;
SELECT ENTMESSAGE('$', 'P', 10)
INTO :title1 FROM DUMMY;

Processed Reports PDF last generated: Dec 10, 2024

Priority SDK Page 173

:REPCOLTITLE.30 = :title1;

Defining Dynamic Report Conditions

Processed reports that are generated by a procedure can also include dynamic conditions
that are defined while running the report. To use this option, add a local variable called
REPCONDITION (FILE type) to an SQLI step preceding the report step, as follows:

SELECT SQL.TMPFILE INTO :REPCONDITION FROM DUMMY;

You can now define additional report conditions via queries whose output is written to the
REPCONDITION variable (in ASCII format).

Example: See step 40 of the WWWDB_PORDERS_A procedure.

Processed Reports PDF last generated: Dec 10, 2024

Priority SDK Page 174

Running the Procedure

Using a Program to Run the Procedure

You can use the Run Procedure program (accessed from the Procedures menu) or the Run
Report/Procedure program (run as an Action from the Procedure Generator form) to execute
a procedure. This method is particularly useful when testing a newly developed procedure for
bugs.

Activation from a Menu

In order for a procedure to be activated from a menu, it must be linked to that menu. To
create that linkage, take the following steps:

1. Enter the Menu/Form Link form, a sub-level of the Procedure Generator form.
2. Indicate the name of the menu in question and specify M in the Type column.
3. Specify an integer to determine the order of the procedure within the menu.
4. Disregard the Background Execution column. This is only relevant for procedures

activated from within a form.

Note: The Menu Items form, a sub-level of the Menu Generator, serves a similar purpose.

Actions from a Form

Running a procedure as an Action from within a form can take place in either the foreground
or the background. If it is in the background, the user will be able to continue work in the form
while the procedure is being executed. Indeed, printouts of processed reports and
documents are generally run in the background. In contrast, in a procedure executed in the
foreground, the user has to wait until it is completed to continue work in the form.

When a procedure is run as an Action, the form record on which the cursor rests is input into
the procedure’s PAR parameter (thus, you must label the input parameter “PAR”). Additional
steps in the procedure can then use this parameter.

Example: In the third SQLI step of the ADDPARTTREE procedure, there is a link
to the PAR variable (which is defined as an input column in the first SQLI step).

To allow for running a procedure as an Action from within a form, take the following steps:

1. Enter the Menu/Form Link form, a sub-level of the Procedure Generator form.
2. Indicate the name of the form in question and specify F in the Type column.
3. Specify an integer to determine the order of the procedure within the form’s list of

Actions.
4. If the procedure is to be executed in the background, flag the Background Execution

column.

Note: The Actions form, which is a sub-level of the Form Generator form, serves a similar
purpose.

Running the Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 175

Running a Sub-Procedure

A procedure can be included as part of another procedure. This is useful, for instance, when
you wish to use the same set of steps within several related procedures, or when you wish to
repeat the same set of steps several times within a single procedure.

To include one procedure within another, use the Procedure Link form, a sub-level of the
Procedure Generator.

Running the Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 176

Documents

Introduction

You can use a procedure to generate a document. This kind of procedure collects data from
several reports and displays it using an Internet browser. Each report creates a file, and the
last step of the procedure combines all these files into one displayed file. The final document
can be activated from a form via Actions (retrieving input from the record it was activated
from), or it can be run from a menu, in which case the user chooses the relevant records
during parameter input. The reports in such a procedure must handle one record from the
base table at a time, identified by the autounique key.

Example: In the WWWSHOWORDER procedure, each report handles one record
from the ORDERS table at a time. Each report receives an ORD parameter, which
contains the value of the autounique key of the relevant order.

Creating the Input for the Document

The INPUT parameter of the linked file for the procedure’s main table must be named PAR. If
the procedure is to be activated from the menu, you must define this parameter as input
(specify I in the Input column) and specify the Column Name and Table Name of the table
column that will be linked. If the procedure is to be activated only from a form, it is not
necessary to specify the PAR parameter as input, but you do have to indicate column and
table name.

23.0

In this version, the linked file parameter can also be of type NFILE. This can prevent
performance issues, if the main table is one with a very large amount of records. Note that if
the user does not provide input, the system will show an error message and return to the
input stage, rather than continue the program.

Declaring the Cursor

The HTMLCURSOR command is used to create the cursor that goes over the records stored
in the linked table. The only thing you should write in this step is the cursor query. The first
column in the query should be the autounique key of the table. You can retrieve more
columns in the cursor for sort purposes. The link to the table occurs in the background of the
HTMLCURSOR step.

Example: In the WWWSHOWORDER procedure, the ORDERS table is linked to
the PAR parameter. The first column in the query is the ORD column.

In a non-English system: If the document is in English (i.e., it is assigned the value E in the
HTML Document column of the Procedure Generator), you will not be able to pass any
procedure parameters from a previous step to a step that comes after the HTMLCURSOR
step, as the latter are run in a separate process. You can work around this by writing the
parameter values into a temporary table before the HTMLCURSOR step, and then reading
these values from the table in a later step.

Documents PDF last generated: Dec 10, 2024

Priority SDK Page 177

Going Over the Records

The next step in the procedure is an SQLI step in which you retrieve the records from the
cursor. The system automatically opens the cursor that was declared in the HTMLCURSOR
step, runs the LOOP and closes the cursor.

The value of the first parameter in the cursor is saved in a variable called :HTMLVALUE. This
is a system variable of CHAR type, and it must be converted to an integer using the ATOI
function. Using :HTMLVALUE you can retrieve the relevant record (the one being printed)
from the main table of the document in question.

Example:In the WWWSHOWORDER procedure,

SELECT ORDNAME,ORD,ORDSTATUS,BRANCH
INTO :PAR1,:$.ORD,:STAT,:BRANCH
FROM ORDERS
WHERE ORD = ATOI(:HTMLVALUE)
AND ORD <> 0;

The :$.ORD variable will be passed to the reports.

Executing Reports that will Create the Document

All reports that are part of the document should receive at least two parameters. The first is
the value of the autounique key of the record currently being worked on (e.g., the sales order
in question). The second parameter should be of ASCII type, and must contain "OUTPUT" in
the Value column. This parameter will appear again in the final INPUT step of the procedure,
in which all the text files created by the reports are combined into one document.

Displaying the Document

The last step in the document procedure should be the INPUT command. In the Procedure
Parameters sub-level form,you must list all the text file parameters that were sent to the
reports in the procedure. The INPUT step combines all these files into a single HTML file.

To understand how the text files are positioned on the page, the HTML page can be viewed
as a matrix. Each text file is placed in that matrix in the order you specify in the Proc.
Parameter-HTML Design form, a sub-level of Procedure Parameters.

Thus, for each parameter, specify its location in terms of row and column. All the reports
defined in row 1 will appear at the top of every new page of the document. For example, you
would probably like the company logo to appear at the top of every page. You can also
specify the percentage of the width that each report will occupy (in the Width %column).

Once you finish designing the report in this step, run the Create HTML Page for Step action
to generate the HTML framework that will be used by the document. Rerun this action
whenever you adjust the document's design.

Defining Print Options

You can offer the user a number of print formats to choose from, based on selected reports
included in the procedure. First, name the print format in the sub-level form, Print Formats;

Documents PDF last generated: Dec 10, 2024

Priority SDK Page 178

then, specify which reports will be displayed in this format using the Reports Included in Print
Format form. You can also offer the user the option of printing attachments together with the
main document. To do so, include the HTMLEXTFILES command towards the beginning of
the procedure, recording a step query for it. This command has no parameters.

Example: See the various print formats defined for the WWWSHOWORDER
procedure. See also the HTMLEXTFILES command in this procedure.

Setting a Number of Copies to Print

You also might want to create a program that generates multiple copies of a document by
default, so that users need not update the number of copies each time the document is
printed. The number of copies to be printed can be maintained in a custom form column.

For instance, say you want to create a procedure that prints multiple copies of a designated
warehouse task, in which the number of copies is defined per warehouse. In order to achieve
this, you can add a custom column to the WAREHOUSES form in which to define the
desired number of copies. This value can then be retrieved when executing the document, in
the HTMLCURSOR step of the procedure:

1. Add a custom column to the WAREHOUSES form (column name =
PRIV_NUMCOPIES; column type = INT) that can receive any number between 1
and 7.

2. In the HTMLCURSOR step of the custom procedure, use the DAYS table to define a
loop that generates the designated number of copies when executing the document:

SELECT WTASKS.WTASK, WTASKS.WTASKNUM,
(:$.SRT = 1 ? WTASKS.WTASKNUM :(:$.SRT = 2 ? WAREHOUSES.WARHSNAME : ''))
FROM WTASKS, WAREHOUSES, DAYS
WHERE WTASKS.WTASK <> 0
AND WTASKS.WARHS = WAREHOUSES.WARHS
AND DAYS.DAYNUM BETWEEN 1 AND MAXOP(1, WAREHOUSES.PRIV_NUMCOPIES)
ORDER BY 3, 2;

Notes:

• If you wish to allow for a number of copies that is greater than 7, you can use a
custom table rather than the DAYS table. However, any table you use must contain
a fixed number of records, like the DAYS table.

• If the user also specifies a number of copies when sending the document to the
printer (e.g., 2), the total number of copies printed will be a product of both numbers
(e.g., if PRIV_NUMCOPIES = 3, a total of 6 copies will be printed).

• If this mechanism is used to generate multiple copies of a document in which only
one original can be printed (such as an invoice or receipt), this mechanism does not
override that restriction. In other words, additional copies that are generated in this
fashion are still marked as copies.

Documents PDF last generated: Dec 10, 2024

Priority SDK Page 179

Special Document Features

Sending Documents by Automatic Mail

There are several print/send options to choose from when working with documents. In
addition to the standard options, you can use calculated report columns to include an
Automatic Mail option (automatically sends the report to the designated contact as an e-mail
attachment).

To enable the Automatic Mail option, include a report column with the title #MAIL. This option
opens a customer or vendor task, depending on the contact in the document. If the contact in
question is an external contact of another company (i.e., is linked to the customer/vendor in
the document via the External Contacts form), add a #CUSTNAME or #SUPNAME report
column that stores the number of the customer/vendor in the current document. Otherwise,
the task will be opened in the name of the contact's company.

Document Design: Forcing Display of the Line
Number

For HTML printouts that require line numbering, you can prevent users from hiding the line
number by including a report column whose title is {#LINE}. Such a column will not be
displayed in the design utility, will appear untitled in the document and will automatically be
assigned the first column position.

Notes:

• Only one {#LINE} column can be included in any given report.
• Only user designs created in Priority version 17.3 and higher will be affected.

Special Document Features PDF last generated: Dec 10, 2024

Priority SDK Page 180

Outputting Documents - the
WINHTML Program
Using the WINHTML program, you can output the document in a variety of formats and
control document properties.

In the following syntax, optional parameters are specified in square brackets [], while
mutually exclusive parameters (i.e., you need to choose one of them) are separated by a
pipe symbol |

EXECUTE WINHTML '-d' | '-dQ', 'document_name', 'table',
'linked_file', '-v', 'record_id', ['-trc', debug_file,] ['-s',]
['-e',] ['-edoc' | '-signpdf',] ['-format', format_num,]
['-lang', lang_num,] ['-AMAIL',]
['-o' |'-pdf' | '-wo' | '-wpdf',] ['output_file',]

WINHTML Parameters

• ‘-d’ - create document.
• ‘-dQ’ - Print document with the default printer. You can only print a single document

(i.e., one specified as a record ID) when using this parameter.
• ‘document_name’ – the internal name of the document, e.g. WWWSHOWORDER.
• ‘table, linked_file’ – specify this if you are outputting a record from a linked table.

Leave as empty quotes if you are outputting from a standard table, e.g.: EXECUTE
WINHTML ‘-d’, ‘WWWSHOWORDER’, ‘’, ‘’,

• ‘-v’ – use when outputting a single record, such as when using an Action from a
form. This will result in faster output, as the program will skip the HTMLCURSOR
step.

• ‘record_id’ – the unique id of the record you are outputting (e.g. ORD = 100).
• ‘-trc’, debug_file - runs the WINHTML program in debug mode and outputs

debugging information to the debug file.
• ‘-e’ – when working in a language other than English, use the English version of the

document.
• ‘edoc’ – output the document as an e-document.
• ‘signpdf’ – output the document as a PDF and digitally sign it. Please note that a

signed PDF is not equivalent to an e-document!.
• ‘-output_file’ - file name + path to file to create.
• ‘-s’ – supresses the notification window that pops up when preparing the document.
• ‘-o’ |‘-pdf’ | ‘-wo’ | ‘-wpdf’ – select the output format of the document:

◦ -o outputs the document as a system document (HTML)
◦ -pdf outputs the document as a PDF based on a system document
◦ -wo outputs the document based on a Word template (DOCX file)
◦ -wpdf outputs the document as a PDF based on a word template

• ‘-format’, format_num – specify the number of the print format (for system
documents) or Word template (for template documents). When this parameter is
used, the system will ignore the values in the PRINTFORMATS table. The -format
option can only be used when printing a single document, i.e. the -v option is also
specified.

• ‘-lang lang_num’ – Use this parameter to specify the language of the printout. This is
useful if you want to output the document a format defined for a language differing

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 181

from that of the current UI language of the user (e.g. a user working in the system
with the UI in German, who wants to output a document in French for a customer in
France). In this case you need to specify both the format and the language in which
the format is defined.

• ‘-AMAIL’ – automatically send the document to the customer/vendor contact, or to
the customer/vendor directly (based on whether a contact with an email is defined or
not).

Document Format

As the printout will be created automatically, there is no user input to determine the print
format; rather you have to set it yourself. You can do so in one of two ways:

• By specifying the format as part of the document execution command, using the
-format parameter. (see Executing the Document). This option can only be used
when printing a single document, i.e. the -v option is also specified.

• By means of the PRINTFORMAT table, which always saves the last print format
utilized by a given user for a given document. Thus, when the document runs, the
system takes the print format to be displayed from this table. In order to ensure that
your procedure always displays the desired print format, you have to update the
relevant record in the PRINTFORMAT table prior to execution of the document.

Determining Available Print Formats

To find out which print formats are available for a given document, run the following SQL
commands in WINDBI:

/* this code will show all system document print formats defined
for the Order Confirmation document */

SELECT * FROM EXTMSG WHERE EXEC = (
SELECT EXEC FROM EXEC WHERE TYPE = 'P'
AND ENAME = 'WWWSHOWORDER')
AND NUM < 0 FORMAT;
/* this code will show word templates defined for the document */
SELECT * FROM TRIGMSG WHERE EXEC = (
SELECT EXEC FROM EXEC WHERE TYPE = 'P'
AND ENAME = 'WWWSHOWORDER') FORMAT;

Setting the Print Format

At this point you should know the EXEC of the document you want to run and the number of
the print format you want to display. While both HTML formats and Word templates are
stored as negative values in EXTMSG and TRIGMSG respectively, this could create an
overlap of values in the PRINTFORMAT table. To distinguish between the two, Word
templates must be recorded as positive values in PRINTFORMAT.

/* this code defines the format that will be used to print the
document; in the current example, it is assumed that we want to
use HTML format -5 */
:EXEC = 0;
SELECT EXEC INTO :EXEC FROM EXEC WHERE TYPE = 'P'
AND ENAME = 'WWWSHOWORDER';
:PRINTFORMAT = -5;
UPDATE PRINTFORMAT SET VALUE = :PRINTFORMAT

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 182

WHERE EXEC = :EXEC AND USER = SQL.USER;
/* For a Word Template */
/* Note the template number is multiplied by -1 */
:WORDFORMAT = -3;
UPDATE PRINTFORMAT SET VALUE = (:WORDFORMAT * -1)
WHERE EXEC = :EXEC AND USER = SQL.USER;

WINHTML Examples

Executing the Document

The following examples come in pairs. The first example is for outputting a single document
(with ‘-v’), the second one is for outputting multiple documents:

• To output the document as an HTML system document (-o), use the following code:

/*single document*/
:ORD = 100;
:HTMLFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.html');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-o', :HTMLFILE;

/*multiple documents*/
EXECUTE WINHTML '-d', 'WWWSHOWORDER', 'ORDERS', :TMPORDERS, '-o',
STRCAT(SYSPATH('TMP', 1), 'O.html');

• To output the document as PDF based on a system document (-pdf), use the
following code:

/*single document*/
:ORD = 100;
:PDFFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.pdf');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-pdf', :PDFFILE;

/*multiple documents*/
EXECUTE WINHTML '-d', 'WWWSHOWORDER', 'ORDERS', :TMPORDERS,
'-pdf', STRCAT(SYSPATH('TMP', 1), 'O.pdf');

• To output the document as a Word file (-wo), use the following code:

/*single document*/
:ORD = 100;
:WORDFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.docx');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-wo', :WORDFILE;

/*multiple documents*/
EXECUTE WINHTML '-d', 'WWWSHOWORDER', 'ORDERS', :TMPORDERS, '-wo',
STRCAT(SYSPATH('TMP', 1), 'O.docx');

• To output the document as a pdf file based on a word file (-wpdf), use the following
code:

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 183

/*single document*/
:ORD = 100;
:PDFFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.pdf');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-wpdf', :PDFFILE;

/*multiple documents*/
EXECUTE WINHTML '-d', 'WWWSHOWORDER', 'ORDERS', :TMPORDERS,
'-wpdf', STRCAT(SYSPATH('TMP', 1), 'O.pdf');

Notes:

The above code will create the files in the temp folder of the Priority installation.

Printing with -format

:ORD = 100;
/* html */
:HTMLFORMAT = -1;
:HTMLFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.html');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-format', :HTMLFORMAT, '-o', :HTMLFILE;
/* Word - docx */
:WORDFORMAT = -3;
:WORDFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.docx');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-format', :WORDFORMAT, '-wo', :WORDFILE;

Printing the Document using the Default Printer

If you want to print the document, use ‘-dQ’ instead of ‘-d’. In this example we assume our
order has an id of 100. Remember that you must specify the document as a record ID in this
case.

:ORD = 100;
EXECUTE WINHTML '-dQ', 'WWWSHOWORDER', :ORD

Creating a Digitally Signed PDF Document using Procedure
Code

Assuming that the user running the procedure has been granted the privileges required for
digitally signing PDF documents, a HTML document may be converted into a PDF and
digitally signed from within the procedure itself. This is done by adding the –signpdf option
to the WINHTML command. Remember that a digital signature is not the same as an e-
document!

Example: The following code will create a digitally signed PDF of the sales order in which
ORD = 100:

:ORD = 100;
:PDFFILE = STRCAT(SYSPATH('TMP', 1), 'SOMEFILENAME.pdf');
EXECUTE WINHTML '-d', 'WWWSHOWORDER', '', '', '-v', :ORD, '-s',
'-signpdf', '-pdf', :PDFFILE;

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 184

Creating an E-Document using Procedure Code

If you are required to create a digitally signed E-Document, for instance, when printing
financial documents, you can create a digitally signed E-Document from within the procedure
itself. This is done by adding the -edoc option to the WINHTML command.

Example: The following code will create a digitally signed E-Document of an Invoice/Credit
Memo:

EXECUTE WINHTML '-d', 'WWWSHOWCIV', '', '', '-v', :IV, '-s',
'-edoc', '-pdf', :FILE2;

To automate the mailing of the E-Document that you created, use the following code:

EXECUTE WINHTML '-d', 'WWWSHOWCIV', '', '', '-v', :IV, '-g',
'-edoc', '-AMAIL', '-s';

Note: When using the -AMAIL parameter, do not specify a path/filename, as the file will be
renamed automatically and saved in the relevant invoice’s attachments.

Saving a Certified Copy when Printing a Document

You can define a procedure so that, when the document is printed or sent by e-mail
(:SENDOPTION = ‘PRINT’ or ‘AMAIL’), a certified copy is saved that can be printed later
(using the Create Certified Copy program).
In order to save a copy:

• Include an HTMLEXTFILES step which goes over the attached files.
• In the first INPUT step, set the :HTMLPRINTORIG variable to 1.

• In the SQLI step after the HTMLCURSOR step, set the :SAVECOPY variable to 1.
These variables are updated during runtime, so that if several documents are being
printed together, the variables will be set for each individual document, depending
on its status.

Example: See the WWWSHOWCIV procedure.

Note: See also the SHOWCOPY command in Procedures.

Displaying the Document

22.0

If you are executing WINHTML from a procedure, you can combine it with a URL step in
order to display the document in the browser or download the docx file.

1. Add a SQLI step, with a paramter of type ASCII that will contain the url for the file. In
this example, we’ll use ADD (short for address).

2. Add the following code:

:DOC = 100;
:FILENAME = 'document.pdf';
:PATH = '';

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 185

/* We use the NEWATTACH function to create a path in the system/
mail folder*/
SELECT NEWATTACH(:FILENAME) INTO :PATH FROM DUMMY;
EXECUTE WINHTML '-d', 'WWWSHOWORD', '', '', '-v', :DOC, '-pdf',
:PATH;
SELECT SQL.TMPFILE INTO :$.ADD FROM DUMMY; /*This file will
contain our URL */
/* You can find out the start of the URL by opening an existing
attachment on the server and copying the start of the address up

to "primail" */
:URLSTART = 'https://exampleserver.com/comp/primail/';
/* Cut the previously generated path to only the subfolder and

filename */
SELECT SUBSTR(:PATH, 19, STRLEN(:PATH)) INTO :PATH FROM DUMMY;
/* Combine the url together into the ADD url file */
SELECT STRCAT(:URLSTART, :PATH) FROM DUMMY
ASCII :$.ADD;

3. Add a URL step to the procedure, with the ADD parameter.

When run, the procedure will generate the document in the specified format (in our case
PDF), then open it in the browser.

Outputting Documents - the WINHTML Program PDF last generated: Dec 10, 2024

Priority SDK Page 186

The Letter Generator

Introduction

The Letter Generator allows users to design letters that can be sent to a third party (e.g., a
customer or vendor) using dynamically populated data fields. In the Letter Generator form,
users can assign the letter a name and choose which procedure is used to create it. This
procedure creates letters for a specific recipient or group, using a linked form record (e.g., a
record in the Customers or Vendors form) to populate any data fields.

The Letter Generator form has two sub-levels:

• Remarks — Used to design and edit the content of the letter (including data fields).
• Attachments — Used to attach relevant files to the letter.

Creating a Letter

Procedures used to create and send letters are like other procedures that generate HTML
documents, and use a similar structure. A procedure of this type should contain the following
steps, in this order:

• INPUT
• HTMLCURSOR
• An SQLI step to retrieve the record for which the letter is being created (by means of

the HTMLVALUE variable) and insert values from this record and related records
into the LETTERSTACK table (see below).

• Any reports that should appear at the top of the letter (e.g., the company logo and
document number).

• A MAILMERGE step, which populates any fields in the formatted text with the
corresponding values. The MAILMERGE program receives the following
parameters:

◦ A linked table which receives the formatted text, after all fields have been
replaced by the corresponding values.

◦ A variable of INT type that holds the autounique value of the relevant
record.

◦ A variable of CHAR type that holds the name of the column containing the
record's autounique value (e.g., CUSTOMERS.CUST or
SUPPLIERS.SUP).

• The LETTERSTEXT report. Like other reports that are run with processed data, this
report receives two parameters:

◦ A linked table containing the processed data (in this case, the linked table
from the MAILMERGE step, in which all fields have been replaced by the
corresponding values).

◦ An ASCII parameter with the value "OUTPUT", which receives the report's
output.

This report can be defined once and then reused as is for any procedures used to create
letters, with no need for further modification.

• Any reports that should appear at the bottom of the letter (e.g., the user's signature).

The Letter Generator PDF last generated: Dec 10, 2024

Priority SDK Page 187

• The INPUT command, which combines all the text file parameters that were sent to
the reports in the procedure into a single HTML file.

• The END command (which ends the procedure).
• The source report for the letter. This report lists all data fields that can be included in

the letter, and is based on the LETTERSTACK table (see below).

Example: See the standard CUSTLETTER procedure.

Note: If you are creating a procedure used to create and send letters by copying an existing
procedure, make sure to delete the letters defined for the original procedure (in the Print
Formats sub-level form) from the copied procedure. Then, assign new letters to the new
procedure.

The LETTERSTACK Table

This table is used as a basis for the procedure's source report. The table's unique key
contains the following 4 columns:

• USER
• STATUSTYPE
• KEY1
• KEY2

During the SQLI step, this table is populated with values taken from the record for which the
letter is being created (and related records), as follows:

• USER Receives the name of the current user.
• STATUSTYPE Receives the type of document for which the letter is being created,

represented by the BPM system assigned to that document type. For example, for
letters to customers, this column receives the value 5.

• KEY1 Receives the autounique value of the record for which the letter is being
created (e.g., CUSTOMERS.CUST). This is usually the value of the HTMLVALUE
variable in the procedure.

• KEY2 This column can receive the autounique value of a related record used in the
letter's source report (e.g., for letters to customers, this column can receive the
autounique value of the customer's main contact).

Notes:

• To offer users the option of sending a letter using the Automatic Mail print/send
options, the letter's source report must include columns with the revised title #MAIL.

• To offer users the option of sending attachments together with the letter, include the
HTMLEXTFILES command after the HTMLCURSOR step, recording a step query
for it.

• Letters can also be attached to mail messages sent by the BPM mechanism,
provided the same document type is assigned to both the letter and the BPM flow
chart.

• A single letter can be linked to more than one procedure (in the Letter Generator
form). In such a case, users will be able to choose the desired procedure in the
Print/Send Options dialogue box.

The Letter Generator PDF last generated: Dec 10, 2024

Priority SDK Page 188

Interfaces
Priority offers two special interface tools. The form load utility (INTERFACE program) serves
both to import data directly into a Priority form (from an external text or XML/JSON file or an
internal load table) and to export form data to a file or table.

In contrast, the table load utility (DBLOAD program) imports data into an interim table from a
tab-delimited text file (Excel files can be converted into tab-delimited files using a utility
program). SQL statements (a load query) can be recorded for the load and will be executed
as it is performed. The table data can then be displayed in a form, in which further
manipulations can be made (e.g., by using an Action to run a procedure), before it is loaded
from the interim table into the appropriate Priority form using the INTERFACE program.

In fact, these two tools are often used together: the table load to add data to an interim table,
and then the form load to load the data into a regular form.

You cannot change an existing form load or table load. You can, however, make use of
existing load tables, interim tables and load procedures. Sometimes it is enough to create
your own table load and use existing entities for the rest.

Important! The records stored in Priority tables are always inserted into those tables via
Priority forms. Never insert records directly into Priority tables, as this will bypass the
integrity checks and other actions defined in the form triggers. Even if you repeat all existing
logic of the form in question, your code can cause bugs in the future. For example, if
mandatory columns are added to the table in some future software version, with default
values that are filled in within the form, this will be ignored by your code!

Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 189

Form Loads
Form interfaces are used to both import records into Priority forms and to export records
from those forms. Using a form interface to import data simulates a user adding one or more
records to the target forms, which includes firing all the relevant field and form triggers.

Example: You write a procedure that receives the customer name and > a list of
ordered items as input. The procedure opens a sales order for the customer in
input, and inserts the items into the Order Items sub-level form. In this case you
must use the Form Load Designer to insert new records into the Sales Orders form
and its sub-levels.

Advantages of Form Interfaces

There are several advantages to using form interfaces to insert and update data:

• Data Integrity - as mentioned, form interfaces simulate a user manually entering the
data in the form. They are subject to field and form triggers, and will fail if they
trigger an error. You can choose whether interfaces will fail on warnings and
business rules, as well.

• Work with multiple forms - a single form interface can perform actions on a parent
form and its subforms in one process.

• Feedback - upon completion, the interface reports which lines were loaded
succesfully and which failed. Successful lines return the key(s) of the created/
updated records, while errors that caused failures are automaticaly stored in the
database.

As such, interfaces are an excellent option whenever you need to create or update records,
especially in standard forms.

Notes:

• Think carefully before running an interface from a form trigger. If the form interface
can cause that same trigger to fire again, you may create an infinite loop where an
interface triggers itself.

• To ensure accountability, interfaces will generate an error when trying to update
documents that are assigned to inactive users. System administrators can use
standard tools in the system to reassign documents from inactive users to active
ones.

Form Interface Sources and Targets

A form interface serves as a map between one or more forms and their columns to a load
table or a file. A form interface can read/write from the following:

• a database load table. The standard load table in the system is called
GENERALLOAD, but you can also create custom load tables.

• files:
◦ XML
◦ JSON

Form Loads PDF last generated: Dec 10, 2024

Priority SDK Page 190

◦ tab separated files
◦ fixed width files

General Defintions for All Interfaces

Form interfaces are recorded in the Form Load Designer form and its sub-levels (System
Management → Database Interface → Form Load (EDI)).

Interface Name and Title

The interface name is a short name by which the interface is identified by the system. The
following restrictions apply:

• Only alphanumeric values (uppercase and lowercase letters and digits) and the
underline sign may be used (no spaces).

• The name must begin with a letter.
• You may not use a reserved word (a list of reserved words appears in the Reserved

Words form → System Management → Dictionaries).
• The name assigned to any newly created form interface must include a common

four-letter prefix (the same one you use for all entities that you add to Priority for
the customer in question; e.g., XXXX_LOADFNC).

The interface title is the means of identifying the interface when executing it from the menu.

Module

Each form interface belongs to a given Priority module. As different modules are included in
each type of Priority package, users are restricted to those form loads whose modules they
have purchased. Assign any new form interface you create the “Internal Development”
module; this way you (and your customers) will be able to use it no matter which modules of
Priority have been purchased.

Load Parameters

A number of parameters will affect the form interface. Some of these can also be designated
during execution of the interface:

• Do Not Skip Lines — Check this column when you want the INTERFACE program
to continue loading records of the current record type once an error occurs. Leave
this column blank to stop the insertion of records of the current record type when an
error is encountered.

Example: The interface is supposed to open two sales orders, each of
which contains a few order items. If the INTERFACE program encounters
an error while loading the first item of the first sales order and the Do Not
Skip Lines column is not flagged, then the program will skip to the next
order. If the column is checked, then the program will continue loading the
remaining items of the first order.

• Ignore Warnings — Priority forms generate two types of messages: errors and
warnings. Leave this column blank if you want the INTERFACE program to treat
warning messages as errors.To ignore warning messages, flag this column.

Form Loads PDF last generated: Dec 10, 2024

Priority SDK Page 191

• HTML Text — When exporting Priority data to an application that supports HTML
tags (such as another Priority application), check this box. HTML text definitions,
such as fonts, sizes and colors, will be transferred intact, together with the text.

Form Loads PDF last generated: Dec 10, 2024

Priority SDK Page 192

Loading from/to a Load Table

Introduction

Load tables are used when working with interfaces based on events in Priority itself, such as
a procedure that opens a customer shipment based on a sales order. While mostly used to
import data into new or existing records, you can also export data from existing records to a
load table, manipulate it, and then reimport it as new records. This is the case for copying an
existing document.

A load table is a special table with a specific structure. The default GENERALLOAD table
will suffice for most use cases, but you can also create your own. You can also add
additional columns to the GENERALLOAD table if necessary.

To use a load table for your interface, specify it in the Form Load (EDI) form, in the Load
Table column.

Before you start mapping out the interface, it is a good idea to manually perform the
operations to be automated in the actual form. Take note of the order in which you filled in
the fields, as well as any mandatory fields. By doing this ahead of time, you can find any
errors that might cause the interface to fail.

Mapping the Interface

In the Forms for Import sublevel, record the form(s) with which to interface, and the
Code(Record Type) associated with each. The interface recognizes the form by its record
type.

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 193

Indicate the name of each form, as well as the code representing its record type. Each level
in the form tree must be assigned its own unique record type (e.g., ORDERS = 1;
ORDERITEMS = 2).

Tip: After recording a form, use the List of Sub-level Forms report from the list of Actions to
view all its sub-levels (one level down only).

For each form, if you want the interface to overwrite existing records in the sub-levels, flag
the Replace Form Data column. Leave it blank to add the new records to existing ones.

Notes:

• This flag is used primarily for text forms.
• Use of this flag to overwrite form data is based on the assumption that the existing

record(s) will be deleted successfully.
• If the form in question has a PRE-DELETE trigger, it is not advisable to flag this

column, as the trigger may interfere with deletion.

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 194

Link Form Columns to Table Columns

Use the next sub-level, Link Form Cols to Intrm Tbl Cols, to indicate which form columns
are equivalent to which load table columns and to specify the order of column insertion.

While the Choose list of form columns only includes updatable columns in the form, the
INTERFACE program can also insert values into hidden columns. This is useful, for instance,
when you want to create a form load that updates records. Do so with caution, however. In
most other cases, it is not good practice to insert values into hidden or read-only columns, as
this may contradict some checks defined in the form.

Example: To update the unit price of ordered parts whose records already exist in
the ORDERITEMS form, you would define one of the load table columns as
updating the hidden ORDI column in that form. In this case, make this column first
in order of insertion. But to specify the ordered part, use the PARTNAME column.
Do not use the hidden PART column, even though this may seem easier, as the
CHECK-FIELD trigger of the PARTNAME column will be bypassed and this is likely
to have an adverse effect on record insertion.

If you want the INTERFACE program to treat empty strings and zero values as a true value,
flag the Insert Null Values column.

Example: Flag this column to load records into the ORDERITEMS form for ordered
parts with a unit price of 0. Otherwise, the INTERFACE program will ignore the 0
value in that column and insert the default unit price of the item instead by
activating the form's trigger.

Default Values

Use the Default Value for Column subform to assign a default value to be loaded into the
form column. If the load table column is empty, the value specified here will be loaded into
the form table. Likewise, when the form interface is used to export data, if the form column is

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 195

empty, the default value will be exported.

Implementation in Code

Now that we have mapped out the interface in the form, lets take a look at how we might use
it in our code.

/* There's almost never a reason to store data for an interface
permanently in a table, so we create a linked, empty copy of
the GENERALLOAD table */
SELECT SQL.TMPFILE INTO :DEMO_GEN FROM DUMMY;
LINK GENERALLOAD TO :DEMO_GEN;
GENMSG 1 WHERE :RETVAL <= 0; /* Generic system error message */

In this example, we have a simple interface for opening a new sales order with the following
structure:

Form Form Title Record Type
ORDERS Sales Orders 1
ORDERITEMS Order Items 2

To open a new record in Sales Orders, we need only provide the customer code
(CUSTNAME column). We have mapped it to the TEXT2 column of GENERALLOAD. Other
fields in the form are filled in automatically.

INSERT INTO GENERALLOAD(LINE, RECORDTYPE, TEXT2)
SELECT 1, '1', CUSTOMERS.CUSTNAME
FROM CUSTOMERS
WHERE CUSTDES = 'Demo Customer';

In contrast, Order Items has 4 mandatory fields, as seen in the image above.

INSERT INTO GENERALLOAD(LINE, RECORDTYPE, TEXT2,
INT1, REAL1, DATE1)
SELECT SQL.LINE + 1, '2', PART.PARTNAME,
INTQUANT(1.0), PART.LASTPRICE, SQL.DATE + (24:00 * 10)
FROM PART
WHERE PARTNAME LIKE 'DEMO%';

/* The TQUANT quantity field is a shifted integer, so we
use INTQUANT with a real number to convert the quantity
based on the system's decimal precision settings */

The above code will insert into our interface all the parts that have a name that starts with
DEMO.

Tip: Note the use of SQL.LINE to calculate our line number. Since the line number
has to be unique, you can use SQL.LINE to auto-increment values in case you are
inserting more than one line.

For the sake of example, our GENERALLOAD table would now contain the following values:

LINE RECORDTYPE TEXT2 INT1 REAL1 DATE1
1 ‘1’ ‘DEMOCUST’

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 196

LINE RECORDTYPE TEXT2 INT1 REAL1 DATE1
2 ‘2’ ‘DEMO01’ 1000 25.00 03/15/23
3 ‘2’ ‘DEMO02’ 1000 35.00 03/15/23

We are now ready to execute the interface:

EXECUTE INTERFACE 'DEMO_NEWORDER',
SQL.TMPFILE, '-L', :DEMO_GEN;

See Executing the Form Interface for more details on the various options when running the
interface program. This one is fairly barebones, providing the name of the interface, a
temporary file to store messages from the program, and the parameter that tells the program
to use the linked table.

Assuming there were no errors, we should now have a new order in the system. The
LOADED AND KEY columns in the GENERALLOAD table are updated based on the results:

LINE RECORDTYPE LOADED KEY1
1 ‘1’ Y ‘120’
2 ‘2’ Y ‘701’
3 ‘2’ Y ‘702’

LOADED is set to Y for all lines that were successfully loaded. The KEY1 (and KEY2/KEY3/
etc.) are filled in with the highest priority (autounique or unique) key of the line in the base
table of the relevant form.

To support non-numeric keys, keys are always stored as strings. You can convert them to
integers using the ATOI function, e.g.:

SELECT ORDERS.ORDNAME FROM ORDERS, GENERALLOAD
WHERE ORDERS.ORD = ATOI(GENERALLOAD.KEY1)
AND GENERALLOAD.RECORDTYPE = '1'
AND GENERALLOAD.LOADED = 'Y';

To end the example, we unlink the temporary table:

UNLINK GENERALLOAD;

Adding Line Items to an Existing Document

When an interface that adds line items to a document is executed, by default the new items
are inserted first in the document (that is, they receive a smaller line number than existing
records). For instance, if a given interface adds lines to an existing order that contains two
lines, the new record will appear on line 1, the first existing order item will move to line 2 and
the second existing order item will move to line 3.

If you want to change the position of the new record (e.g., move it directly after the first line
item), do the following:

1. Define the interface so that existing lines are retrieved (e.g., by linking the INT1
column in the load table to the KLINE or ORDI column).

2. Add a column to the load table to hold the internal ID of the first line (KLINE or
ORDI).

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 197

3. In the load table, insert the record of the new line to be added after the record that
retrieves the first line.

Creating your own Load Table

If the standard load table is not sufficient for your needs, you can create your own.

A load table must contain certain columns, defined as follows (name, type, width, title):

• LINE (INT,8,'Ln')
• RECORDTYPE (CHAR,3,'Record Type')
• LOADED (CHAR,1,'Loaded?')
• KEY1 (CHAR,20,'Key 1')
• KEY2 (CHAR,20,'Key 2')
• KEY3 (CHAR,20,'Key 3')

The LINE column must be the unique key of the table.

Note: For an example of a custom load table, see the predefined GENERALLOAD_T that
meets these criteria. Moreover, it contains an extra TITLE column, which can be used to
store a message that will be added to the form's error message (if there is one). See, e.g.,
the DELWTASKITEMS procedure.

In some cases (see below) you may need more than three key columns. As you define the
forms included in the load, the Form Load Designer will warn you if there are not enough
keys in the designated table. If you need more keys, add them to the relevant
GENERALLOAD table or design your own table.

Loading from/to a Load Table PDF last generated: Dec 10, 2024

Priority SDK Page 198

Load Data from a File or Export Data
to a File

Introduction

Form interfaces can be mapped to match 4 different types of files:

• Fixed-width files
• Tab separated values (TSV)
• XML files
• JSON files

Fixed and TSV files can be grouped together, as mapping is based on position in the file. For
XML and JSON files, in contrast, mapping is based on tags or fields, respectively.

For fixed-width and TSV files, you’ll need detailed information regarding the structure and
order of the fields. For JSON and XML, you’ll need a sample file with the necessary tags or
fields.

Priority's interface tools can import data from either ASCII or Unicode (UTF-16) files, and
will automatically recognize the format used.

Data exported from Priority for use in outgoing interfaces will be saved in Unicode (UTF16)
format, unless otherwise specified.

Load Data from a File or Export Data to a File PDF last generated: Dec 10, 2024

Priority SDK Page 199

Import/Export Data with Plain Text
Files

Fixed Position and TSV Files

When importing or exporting form data using a plain-text file, you’ll need detailed information
regarding the structure and order of the fields in the file. For fixed-width, you’ll need exact
width and positioning information for each field. For tab-separated files, positioning
information is sufficient.

Tips:

• You can use a filter to convert files that use a different separator into tabs for use in
imports. For example, if you have a comma-separated values file (CSV), you could
convert the commas to tabs and treat the file as a TSV. However, this method would
not work if the file contained regular tabs as part of its contents.

• If you want to create a new form load based on an existing one, retrieve the desired
form load and run the File Definitions for Form Load report by Action from the Form
Load Designer form.

Defining the File

Designate the name of the file, its record size and its file type in the appropriate columns of
the Form Load Designer form.

If the file is stored in the system/load directory, you can specify just the filename. Otherwise,
provide a path to the file, which can be relative (such as ../../tmp/filename.txt) or a full path.

For interfaces that load file data, flag the Sub-directory? column to search for the file in the
sub-folder of the current company within system/load. The flag is only relevant when a file
name is specified in the File Name field without a path (i.e., the field does not contain (/) or
(\)). Leave the column blank for the program to search for the file in system/load.

Notes: If the file name appears with a path (i.e. the field contains (/) or (\)), flagging this
column will have no effect.

As of version 19, this column is flagged by default for all interfaces in the system (customized
or standard) that load data from a file.

Forms in the Load

Use the Forms to be Loaded sub-level form to specify which forms participate in the load.
These usually consist of a root form (e.g., ORDERS) and one or more sub-levels (e.g.,
ORDERITEMS).

Indicate the name of each form, as well as the code representing its record type. Each level
in the form tree must be assigned its own unique record type (e.g., ORDERS = 1;
ORDERITEMS = 2). This must match the record type in the file itself.

Import/Export Data with Plain Text Files PDF last generated: Dec 10, 2024

Priority SDK Page 200

Note: After recording a form, run the List of Sub-level Forms report by Action to view all its
sub-levels (one level down only).

For each form, if you want the interface to overwrite existing records in the sub-levels, flag
the Replace Form Data column. Leave this column blank to add the new records to existing
ones. This is only relevant, of course, when the root record (e.g., an order) already exists. If
the interface is used only for inserting new root records, leave the column blank to make the
interface faster.

Link Form Columns to Fields in File

Use the next sub-level, Position of Form Columns in File, to match the data in the file to
specific form columns. For text files, also indicate the order of insertion. In a TSV file
separators, identify the file data by its column number. In fixed-width files, indicate the
number of the first and last characters that contain the field.

If you want the INTERFACE program to treat empty strings and zero values as a true value,
flag the Insert Null Values column. If the file contains REAL values (or shifted integers)
without a decimal point, indicate the number of Digits After Decimal.

Use the Position of Record Type in File form (a sub-level of the Form Load Designer) to
indicate where the record type is located in the file. Specify the column number (in a tab-
separated file) or the position of the first and last character that defines this field (in a fixed-
width file).

Default Values

Use the Default Value for Column sub-level to assign a default value to be loaded into the
form column. If the specified position in the file is empty, the value specified in this sub-level
form will be loaded into the form table. When the form interface is used to export data, if the
form column is empty, the default value will be exported.

Additional Definitions for Exporting Data

When you are exporting data from Priority forms to a file, you can use the Outgoing
Interface Definitions form (a sub-level of Position of Form Columns in File) to define the
following:

• Align – determines how to align the columns in the file (left or right); useful for
number columns.

• Date Format – determines how date values will be displayed. You can use any of
the available SQL date formats, such as MMDDYY or MM/DD/YY.

• Padding w/Zeroes – useful for number columns.

Import/Export Data with Plain Text Files PDF last generated: Dec 10, 2024

Priority SDK Page 201

Import/Export Data with XML/JSON
Files

Parsing a File

Parsing File Tags/Fields

If you are loading to or from an XML/JSON file, you must define the tags/properties in the
system. The easiest way to do so is to import a file with the tags/properties and let the
system parse it:

In the Web Interface

1. In the Form Load Designer form, record a default File Name (e.g. example.xml or
demo.json). This filename will be used when exporting the interface.

2. Run the Import XML/JSON Interfc Template Action and upload the template file.
3. Run the Prepare Tags by File Defs Action. The structure of the file is analyzed and

transferred to the Tags for Interface sub-level form.

In the Windows Interface

1. Save the file in the system\load\company directory, where company is the name of
the current company (SQL.ENV).

2. In the Form Load Designer form, record in File Name the location of the file (e.g.
example.xml or demo.json). This filename will also be used when exporting the
interface.

3. Run the Prepare Tags by File Defs Action. The structure of the file is analyzed and
transferred to the Tags for Interface sub-level form.

XML

XML Tags Structure

Additions in Version 23.0

Enter the Tags for Interface form and check the results. The form should show all tags that
are present in the XML file. You can delete tags that are not necessary. You can also add/
revise tag names.

XML tag definitions uses a syntax similar to file paths to specify the location of nodes in an
XML document. Each part of the path represents an element or a step in the document’s
hierarchy.

/root/element

<?xml version="1.0" encoding="UTF-8"?>

Import/Export Data with XML/JSON Files PDF last generated: Dec 10, 2024

Priority SDK Page 202

<root>
<element></element>

</root>

When mapping an XML path to a column name in a table, data from that table column will be
routed to the XML element.

You can also map data to an XML attribute with the following structure:

/root/element>attribute

In this case the data will be output to the XML attribute:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<element attribute="[here will be data]"></element>
</root>

There are four types of tags:

• ’’ (blank) - normal tag.
• ‘C’ - constant value. Value will always be taken from the Tags for Interface form,

rather than from the database table. For a parsed document, the value may be filled
in based on the first appearance of the tag.

• ‘E’ - a structural tag, it marks the end of a tag group.
• ‘R’ - structural tag, it marks the end of a repeating tag group.

So, for example, XML tags with the following settings:

`mainTag/valueTag`
`mainTag/groupL1/groupL2f/data1`
`mainTag/groupL1/groupL2f/data2`
`mainTag/groupL1/groupL2f` - type E
`mainTag/groupL1/groupL2s/data1`
`mainTag/groupL1/groupL2s/data2`
`mainTag/groupL1/groupL2s` - type E
`mainTag/groupL1` - type R

Would output a result as follows (export is from the Sales Orders form):

<?xml version="1.0" encoding="UTF-8"?>
<mainTag>
<valueTag>SO24000726</valueTag>
<groupL1>
<groupL2f>
<data1>000</data1>
<data2>2000.00</data2>

</groupL2f>
<groupL2s>
<data1>000</data1>
<data2>2000.00</data2>

</groupL2s>
</groupL1>
<groupL1>
<groupL2f>
<data1>000-12</data1>

Import/Export Data with XML/JSON Files PDF last generated: Dec 10, 2024

Priority SDK Page 203

<data2>1000.00</data2>
</groupL2f>
<groupL2s>
<data1>000-12</data1>
<data2>1000.00</data2>

</groupL2s>
</groupL1>

</mainTag>

To more clearly illustrate how repeating tags work, lets look at a simplified example:

/Order/OrderItems/OrderItem type R

Notice how OrderItem repeats in the result.

<Order>
<OrderItems>

<OrderItem>
<part>001</part>

</OrderItem>
<OrderItem>

<part>002</part>
</OrderItem>

</OrderItems>
</Order>

Mapping Form Data to XML Tags

Go to the Forms to be Loaded form and its sub-level Position of Column in File. Use the next
sub-level, Tag Definitions, to link each form column to the appropriate tag/field.

• If the tag is a date, you can also define the Date Format, indicating how the date
value will be displayed. You can use any of the available SQL date formats, such as
MMDDYY or MM/DD/YY.

• You can skip tags when there is no data to fill them. Select the Without Empty Tags
option in Tag Definitions sub-level.

• To add a tag, but ensure that it is always empty, you can map a tag to a column, and
then set it as a constant (C) value that is left empty.

While you can use data from multiple forms in one tag group, you should do so in an ordered
fashion. That is, maintain the export order so that data from one table comes first, then the
second, then the third, and so on.

Note: Windows only: Once you have created a form load design that uses an XML file,
Priority automatically enables users to export data from the main form of this load design to
an XML file. In this case the XML File option in the Mail top menu of the relevant form will be
enabled. When it is selected, the user gets a choice of interfaces to run. The system
indicates where the output file has been saved.

Import/Export Data with XML/JSON Files PDF last generated: Dec 10, 2024

Priority SDK Page 204

JSON Files

The Tags for Interface form shows the results of the file parse. The form should show all
properties that are present in the JSON file. You can delete properties that are not
necessary. You can also add/revise property names.

1. For parsed properties, the data in the first record appears in the Value column. If
you want this (or any other value) to be used in all records, regardless of definitions
in the file, specify C in the Type of Value column. Revise the values as necessary.

2. To map JSON properties to a form, move the Forms to be Loaded form and its sub-
level Position of Column in File. Use the next sub-level, Tag Definitions, to link each
form column to the appropriate property. If the property is a date, you can also
define the Date Format, indicating how the date value will be displayed. You can use
any of the available SQL date formats, such as MMDDYY or MM/DD/YY.

Note: Decimal data in JSON files loaded into the system must always use a decimal point as
the decimal separator, even if the decimal separator configured for the Priority system locale
is a different symbol.

Differences between XML and JSON

Importing data for both XML and JSON is identical. However, JSON exports currently do not
support renaming and nesting, and will just follow the structure of the form. So, for example,
an export of ORDERS will look like this:

{ "ORDERS": [
{ "ORDNAME": "SO2400021",

"CUSTNAME": "John Doe"
},
{ "ORDNAME": "SO2400022",
"CUSTNAME": "Jane Doe"
}

]}

We are planning to further extend support for JSON exports in future releases.

Import/Export Data with XML/JSON Files PDF last generated: Dec 10, 2024

Priority SDK Page 205

Executing the Form Load

Introduction

There are a number of alternate ways to execute a form interface.

• Run the Load Data program from the Form Load (EDI) menu. Indicate whether to
import data (Load), load it a second time (Reload), or export data (Upload).

• Activate the load from an SQLI step in a procedure or from a form trigger. To
execute the load in this way, use the following syntax (parameters are explained in
the next section):

EXECUTE INTERFACE 'interface_name', 'msgfile', ['-L', 'link_file'],
['-i', 'Data_File'], ['-stackerr', 'stackerr_file'],
['-w'], ['-ns'], ['-nl'], ['-nv'],

['-noskip'],['-enforcebpm'], ['-t'], ['-W'], ['-m'],
['-o' | '-ou' | '-ou8' [, '-f', 'output_file']], ['-debug', 'debug_file'],
['-repeat'],['-l', 'table_name1', 'link_file1'], '-v';

• Include the form load as an interface step (type I) in a procedure. You can use the
same parameters as in the previous option, except that they are listed in the
Procedure Parameters form (sub-level form of Procedure Steps).

• Include the INTERFACE program as a step in a procedure. The first parameter must
be the name of the form load. Thereafter, you can use the same parameters as
specified above.

Note: The last three methods offer more options than the first.

• Windows only: In addition, users can export data to an XML file from within a form,
by using the XML File command in the Mail menu.

Form Load Parameters

• ‘interface_name’ - The Load Name used to identify the form load in the Form Load
Designer.

• ‘msgfile’ - The file in which error messages will be recorded. This can later be used
to display the resulting message to the user (e.g., "5 out of 6 records were loaded.").

• ‘-L’, ‘link_file’ - Use this option when you want the INTERFACE program to refer to a
linked file of the load table. ‘-L’ tells the load program to use a linked file, and
link_filename is the file that will be used to link the load table.

• ‘-i’, ‘data_file’ - Use this option when you want the INTERFACE program to load
data from a specified source file (plain text, XML, or JSON). If this option is not
specified, the program will look for the source file in the SYSTEM/LOAD folder.

• ‘-stackerr’, ‘stackerr_file’ – Use this option if you want to have INTERFACE program
error messages sent to a linked file of the STACK_ERR table. ‘-stackerr’ tells the
program to use a linked file of the STACK_ERR table, rather than the ERRMSGS
table, and stackerr_file is the name of this linked file.
Note: When using this option, error messages will not be sent to the ERRMSGS
table; thus, the INTERFACEERR report will not retrieve any values.

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 206

• ‘-w’ - Use this option to have the INTERFACE program ignore warning messages
(equivalent to the functionality of the Ignore Warnings column in the Form Load
Designer).

• ‘-ns’ - By default, the INTERFACE program displays a progress bar as the load is
executed. Use this option to disable this utility.

• ‘-nl’ - If the load program encounters errors, it generates an errors report. By default,
each line in that report indicates the line in the load table that generated the error.
Use this option if you don’t want to display the line number in the message.

• ‘-nv’ - When a value generates an error from a CHECK-FIELD trigger, the errors
report, by default, displays the name of the column and value that generated the
error. Use this option to hide this information.

Example: If you try to open a sales order for customer C000981 and that customer
does not exist in the database, the error message in the report would be: "Line X -
Customer Number C000981: Specified item not in database." If you use the ‘-nv’
option, the message will display: "Line X - Specified item not in database."

• ‘-noskip’ - Equivalent to the functionality of the Do Not Skip Lines column in the
Form Load Designer.

• ‘-enforcebpm’ - Many forms use business rules (defined in the Business Rules
Generator or the Data Generator), BPM rules and definitions of paths between
statuses to manage business processes. As part of this process, the Business
Rules Generator/BPM utility sends mail to designated users and/or external
addresses. You should include this parameter when you want the INTERFACE
program to apply any rules created in the Business Rules Generator and to run the
BPM mechanism while loading the form data. If you do not include it, mail will be
sent, but all business rules and BPM rules will be bypassed and defined paths will
be ignored. This means, for example, that custom error/warning messages defined
in the Business Rules Generator will be ignored, and that any status can be
changed to any status (e.g., a customer shipment recorded against an order will
change that order’s status to Closed, even though this status change is prevented
by BPM rules).

Note: Data Generator rules are not affected by this parameter as they are activated
elsewhere in the code (after POST-FIELD). For details on the Business Rules
Generator, the Data Generator and BPM, see the User Interface Guide.

• ‘-t’ - When no file type is defined in the Form Load Designer, use this parameter to
indicate that the file being loaded has tab separators. This option is useful when you
do not know the file type in advance. In such a case, you must define form column
positions in both ways (for both fixed-width and tab-separated files) and then include
this parameter when the load is of a file with tab separators.

• ‘-W’ - Use this option to display warning messages in the Load Errors report even if
you defined the form load to ignore such messages.

• ‘-m’ - Use this option to break up error messages into several lines.
• ‘-debug’, ‘debug_file’ - Parameters used in debug mode; the INTERFACE program

will write all operations executed by the form load into the specified debug file. This
is similar to the other Priority debug tools (see Debug Tools).

• ‘-repeat’ - Equivalent to the Reload option (when the program is run from the menu).
Use this option to reload lines that were not successfully loaded in a previous run
(see more below).

• ‘-v’ - Use this option if you want the INTERFACE program to check the structure of
the input file. If the type of a value (e.g., INT, REAL, DATE) is incompatible with the

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 207

expected type for that position, an error is generated and the file will not be loaded.

Export-only Parameters

The following parameters are only relevant when exporting data.

• ‘-o’ - When exporting to a file, the data will be written to the file recorded in the Form
Load Designer using ASCII character encoding. When loading to a table, the
program will insert records in the defined load table.
Note: This option is often used together with ‘-f’.

• ‘-ou’ - This is similar to the ‘-o’ option, except that data will be written to the file using
Unicode (UTF-16) character encoding.
Note: This option is often used together with ‘-f’.

• ‘-ou8’ - This is similar to the ‘-o’ option, except that data will be written to the file
using Unicode (UTF-8) character encoding.
Note: This option is often used together with ‘-f’.

• ‘-f’, ‘output_file’ - When exporting data to a file (using the ‘-o’ or ‘-ou’ option), include
this parameter to write the output to a different file than the one recorded in the
Form Load Designer.
Note: This is necessary when you have recorded a sample file (used to define XML
tags) in the Form Load Designer.

• ‘-l’ (lowercase "L"), ‘table_name’, ‘link_file’ - Use this option when you want the
INTERFACE program to export data to a linked copy of the load table. You can then
use the data in the linked copy of the table and manipulate it. When using this
option, ‘-L’ needs to be provided with a linked table with a list of records from the
base table of the first form in the load.

Dealing With Errors and Reloading

If errors were encountered by the INTERFACE program, they can be found in the Load
Errors report (INTERFACEERR). These errors are saved in the ERRMSGS table, which
consists of the columns: LINE, TYPE, MESSAGE and USER. The unique key of this table is
USER,TYPE,LINE. That is because this table stores messages from many types of system
programs, and the messages are unique to each user. That is, two different users can run
the INTERFACE program, and each will see only messages from his/her own load. The type
for errors generated by the INTERFACE program is i.

There are various methods of displaying error messages to your own customers. Here are a
number of suggestions:

• In the error message you create, refer explicitly to the errors report, using its entity
name {INTERFACEERR.R}. The entity title will then appear to the user with a link to
the report. All the user needs to do is click on the link.

• Include the INTERFACERR report as a procedure step, using GOTO to skip this
step if there are no errors.

• Link the errors report to the same menu as the procedure that runs the load.
• In a procedure query, define a MSG parameter of ASCII type. Then use SELECT

MESSAGE FROM ERRMSGS WHERE TYPE = ‘i’ AND USER = SQL.USER ASCII
:$.MSG; and pass the MSG parameter to a PRINT procedure step.

• If you know there will be no more than one error message, you can use SELECT
MESSAGE INTO :PAR1 FROM ERRMSGS WHERE TYPE = ‘i’ AND USER =
SQL.USER AND LINE = 1; and then use ERRMSG to display the message.

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 208

If some of the records were not successfully loaded, you may execute the same load again,
with the same data, using the Reload or ‘–repeat’ option. The INTERFACE program will then
run only on those records for which the LOADED column is not assigned the value Y.

Example: The load should open orders and insert items into the order line. If one item failed
to be loaded (e.g., the Part Number was not found in the Part Catalogue), you can repair the
load table (define the part or fix the number) and re-execute the load, and the item will be
inserted into the order that was already opened.

Note: Once the form load is successful, you may wish to export it for installation on a
different server (e.g., if you are running the INTERFACE program on a test installation and
you wish to copy it to the production server). To do so, return to the Forms to be Loaded form
and run the Upload Interface program from the list of Actions .

Executing a Form Load from a Form Trigger or
Step Query

Programs that prepare privileges for procedures and forms also check the SQL statements in
all form triggers and procedure steps. If any interface is executed from a form trigger or
procedure step, the required privileges are prepared whenever the trigger or procedure in
question is activated. For example, when using the syntax EXECUTE INTERFACE
‘interface_name’,... the program prepares privileges for the ‘interface_name’ interface for the
user in question.

Sometimes, however, you may wish to define an SQL variable that refers to the interface to
be executed (e.g., :MYINTERFACE = ‘SOMEINTERFACE’;), rather than specifying the
desired interface directly. In such a case, the privileges program will not be able to identify
the interface being executed. If the user has privileges for the form or procedure itself, but
not for the interface (‘SOMEINTERFACE’), they will not receive any errors, but the form or
procedure may not function correctly.

It is therefore recommended that you refer to any relevant interfaces from within the form/
procedure in such a way that they are identifiable by the privileges program, while ensuring
that they’re not actually executed at that point. For example, include each interface in a
separate EXECUTE command, but run it from within a GOTO command that jumps to step
999, or add the interfaces as additional procedure steps, but place them after an END
command. If the variable can refer to more than one interface, make sure to include a
reference to each possible interface using one of these methods. In this way, the privileges
program will be able to identify any interface that may be executed from the form or
procedure and will prepare all required privileges.

Example: See the BUF7 trigger in the DOCPACK form.

Code Examples

• Execute interface from file specified in Form Load Designer

EXECUTE INTERFACE 'interface', SQL.TMPFILE;

• Execute interface from file specified in code

/* In this example, we run the interface on a file that

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 209

was imported in a procedure step to parameter FIL */
EXECUTE INTERFACE 'interface', '-i', :$.FIL, SQL.TMPFILE;

• Run interface based on load table

SELECT SQL.TMPFILE INTO :G1 FROM DUMMY;

LINK GENERALLOAD ORD TO :G1;
GOTO 99 WHERE :RETVAL <= 0;

INSERT INTO GENERALLOAD ORD(LINE,RECORDTYPE,TEXT2)
SELECT SQL.LINE, '1', CPROFNUM
FROM CPROF
WHERE PDATE = SQL.DATE8;

EXECUTE INTERFACE 'OPENORDBYCPROF', SQL.TMPFILE, '-L', :G1;

LABEL 99;
UNLINK GENERALLOAD ORD;

• Use interface to export data to a load table

SELECT SQL.TMPFILE INTO :G1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :O1 FROM DUMMY;

LINK ORDERS TO :O1;
GOTO 99 WHERE :RETVAL <= 0;

INSERT INTO ORDERS
SELECT * FROM ORDERS ORIG
WHERE CURDATE = '03/22/23';

EXECUTE INTERFACE 'DUMPORD', SQL.TMPFILE, '-o', '-L', :O1,
'-l', 'GENERALLOAD', :G1;

LINK GENERALLOAD TO :G1;
GOTO 99 WHERE :RETVAL <= 0;
LABEL 99;
UNLINK ORDERS;
UNLINK GNERALLOAD;

• Use interface to export data to an XML file in utf-8 encoding:

SELECT SQL.TMPFILE INTO :O1 FROM DUMMY;
:OUTFILE = STRCAT(SYSPATH('TMP', 0), 'Orders.xml');

LINK ORDERS TO :O1;
GOTO 99 WHERE :RETVAL <= 0;

INSERT INTO ORDERS
SELECT * FROM ORDERS ORIG
WHERE CURDATE = '03/22/23';

/* the interface is defined as using XML files */
EXECUTE INTERFACE 'DUMPORDXML', SQL.TMPFILE, '-ou8'
'-L', :O1, '-f', :OUTFILE;

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 210

LABEL 99;
UNLINK ORDERS;

Executing the Form Load PDF last generated: Dec 10, 2024

Priority SDK Page 211

Deleting Records via an Interface
The form load can also be used to delete records from a form. In fact, the very same
interface definition can be used both to insert/update form records and to delete them, the
sole difference being the definition of the record type in the load table or file.

Note: If you use the form load to delete records, make sure that you don’t flag the Replace
Form Data column in the Forms to be Loaded form, as this will cause the form load to fail.

To delete records from a form, record @ before the number value assigned to the record
type.

Example: See the POST-FORM2 trigger in the ORDERITEMS form, which deletes
irrelevant lines from the form.

Deleting Records via an Interface PDF last generated: Dec 10, 2024

Priority SDK Page 212

Dynamic Interfaces
Starting with version 21.0, you can create dynamic interfaces from within the code itself,
without having to predefine them in the interface generator. These interfaces use the file
structure in XML or JSON files to determine the load order when loading data into the
system. Likewise, data can exported to one of these file formats, with the data to be exported
specified explicitly within the interface code. This allows you to import and export data
without having to ensure that an appropriate interface exists in each Priority system.

Note: Decimal data in JSON files loaded into the system must always use a decimal point as
the decimal separator, even if the decimal separator configured for the Priority system locale
is a different symbol.

Special Load Parameters for Dynamic Interfaces

EXECUTE INTERFACE 'FORMNAME', 'msgfile', '-form', ['-L', 'link_file'], ['-
stackerr', 'stackerr_file'], ['-w'], ['-ns'], ['-nl'], ['-nv'], ['-noskip'], [-ignorewrn], ['-
enforcebpm'], ['-t'], [-J], ['-W'], [-m] ['-o' | '-ou'], ['-f', 'output_file'], ['-debug',
'debug_file'], ['-repeat'], ['-l', 'table_name1', 'link_file1' [, …'-l', table_name10',
'link_file10']],['-select', 'FIELDNAME'], ['-expand', 'SUBLEVELFORM'], ['-
delete'], '-v';

• 'FORMNAME' — The name of the form for which you are running the interface.
• -form' – the use of this parameter indicates that this is a dynamic interface.
• '-ignorewrn' – ignore warnings in a dynamic interface (similar to '-w').
• '-J' – export data to a JSON file or import data from one. When omitted, the dynamic

interface will export/import using XML files.
• '-select', 'FIELDNAME' – when exporting data, use select to specify which fields to

export. You can specify multiple fields, using commas to separate them, e.g. '-
select', 'CUSTNAME', 'CUSTDES', and so forth.
Note: EXECUTE is limited to a maximum of 100 arguments.

• '-expand', 'SUBLEVELFORM' – when exporting data, use –expand to select sub-
level forms from which you want to export data. After an expand, you can use select
to specify which fields in the sub-level you want to export. You can specify multiple
sub-level forms, but have to use –expand for each, e.g. '-expand', 'ORDERITEMS',
'-expand', 'ORDERITEMSTEXT'.

• '-delete' – When importing data, indicates that this dynamic interface can delete
records.

Dynamic Interface Examples

Exporting Data

SELECT SQL.TMPFILE INTO :TMPFILE FROM DUMMY;
LINK ORDERS TO :TMPFILE;
GOTO 1 WHERE :RETVAL <= 0;
INSERT INTO ORDERS
SELECT * FROM ORDERS ORIG WHERE ORDNAME IN ('SO2000001364','SO2000001365');
EXECUTE INTERFACE 'ORDERS', STRCAT(SYSPATH('TMP', 1), 'msg.txt'),

Dynamic Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 213

'-form', '-select', 'ORDNAME', 'CUSTNAME',
'-ou', '-L', :TMPFILE, '-f', STRCAT(SYSPATH('TMP', 1), 'O2.txt'), '-J',

'-expand', 'ORDERITEMS', '-select', 'PRICE', 'PARTNAME',
'-expand', 'ORDERITEMSTEXT';
UNLINK ORDERS;
LABEL 1;

In this example, we retrieve two specific orders, then export them to a JSON file (note the
use of –J). We only export specific fields (as denoted by -select), and also export data from
the ORDERITEMS sub-level and its sub-level of ORDERITEMSTEXT (as denoted by
-expand).

If you do not uses -select to specify fields, all form fields will be exported. The following code
exports all fields of ORDERS and the ORDERITEMS sublevel to an XML file. Only fields with
values are exported.

EXECUTE INTERFACE 'ORDERS', STRCAT(SYSPATH('TMP', 1), 'msg.txt'),
'-form', '-ou', '-L', :TMPFILE, '-f', STRCAT(SYSPATH('TMP', 1), 'testxml.xml'),
'-expand', 'ORDERITEMS';

Importing Data

To import data using a dynamic interface, the file must be structured in a format that matches
the Priority hierarchy (form > sub-level > sub-sub-level). Take the following XML file, named
in1.txt, for example:

<?xml version="1.0" encoding="utf-8"?>
<FORM>

<ORDERS>
<CUSTNAME>84841</CUSTNAME>
<ORDERITEMS>

<PARTNAME>000</PARTNAME>
<DUEDATE>07/11/20</DUEDATE>

</ORDERITEMS>
<ORDERITEMS>

<PARTNAME>002</PARTNAME>
<DUEDATE>07/11/20</DUEDATE>

</ORDERITEMS>
</ORDERS>
<ORDERS>

<CUSTNAME>84841</CUSTNAME>
<ORDERITEMS>

<PARTNAME>000</PARTNAME>
<DUEDATE>08/11/20</DUEDATE>

</ORDERITEMS>
<ORDERITEMS>

<PARTNAME>002</PARTNAME>
<DUEDATE>08/11/20</DUEDATE>

</ORDERITEMS>
</ORDERS>

</FORM>

To load it using a dynamic interface, we would use the command:\

EXECUTE INTERFACE 'ORDERS', STRCAT(SYSPATH('TMP', 1), 'msg.txt'),

Dynamic Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 214

'-form', '-i', '-f', STRCAT(SYSPATH('TMP', 1), 'in1.txt'),
'-ignorewrn', '-noskip';

In this case we use the –ignorewrn and –noskip options to ensure that data is loaded
regardless of warning messages that crop up. We recommend adding these options if data
isn’t being loaded as expected. As in standard interfaces, warning and error messages are
stored in the ERRMSGS table (unless you linked them to a STACKERR table). While
developing in WINDBI, you can easily retrieve them by running the following query:

SELECT * FROM ERRMSGS WHERE USER = SQL.USER AND TYPE = 'i' FORMAT;

Deleting Data

When using the –delete option, the file needs to specify the keys of the records to be
deleted. The following example is in JSON format:

{
"ORDERS": [

{
"ORDNAME": "SO0000001",
"ORDERITEMS": [

{
"KLINE": 1
},

{
"KLINE": 3

}
]

},
{
"ORDNAME": "SO0000002",
"ORDERITEMS": [

{
"KLINE": 1
},

{
"KLINE": 2
}

]
},
]

}

Dynamic Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 215

Table Loads

Introduction

You can import data from text files into an interim table in Priority from tab-delimited text
files (Excel files can be converted into tab-delimited files using a utility program). During the
execution of this table load, you can perform additional processing defined in a set of SQL
statements (a load query). Results of the load can be viewed - and revised - in a form based
on the interim table. Finally, a procedure can be used to transfer the final data to a regular
Priority form (e.g., ORDERS), using the form load defined above.

In general, a table load interface is characterized by:

• a unique load file name
• a specified table or a load query which defines how the load is performed
• input fields defined as variables, which can be included in the load query
• parameters affecting the load.

These definitions are recorded in the Characteristics for Download form and its sub-levels
(System Management → Database Interface → Table Load (Interfaces)).

Defining the Load File

Any load files, which must use ASCII or Unicode encoding, should be stored in the system\
load directory or one of its sub-directories (specifically, the sub-directory for a particular
Priority company). Its file name must match the name of the load file defined in the
Characteristics for Download form.

Note: Priority's interface tools can import data from either ASCII or Unicode (UTF-16) files,
and will automatically recognize the format used. Data exported from Priority for use in
outgoing interfaces will be saved in ASCII format, unless otherwise specified.

This name is subject to the following restrictions:

• It may consist of up to 20 characters
• Only alphanumeric values (uppercase and lowercase letters and digits) and the

underline sign may be used (no spaces).
• The name must begin with a letter.
• You may not use a reserved word.
• The name assigned to any newly created form load should include a common four-

letter prefix (the same one you use for all entities that you add to Priority for the
customer in question; e.g., XXXX_LOADFNC2).

If the file in question is stored in a company sub-directory, also flag the Sub-directory column
(and make sure you run the load from the correct company). If data is separated by tabs, flag
the Tab Separator column. You may also specify a brief description of the load file in the
Description of Data column.

Table Loads PDF last generated: Dec 10, 2024

Priority SDK Page 216

Defining the Load

You have two options in defining the load:

• You can designate the load table and have Priority create an automatic query, or
• You can record the load query manually.

In both cases you must also define the input file. This consists of all table columns (in the
case of an automatic query), or the variables that are input in each field (in the case of a
manual query).

The automatic query inserts all data in the input file into the columns of the specified table.
Of course, the input file must contain all unique key columns in the target table (with identical
names) in order for the load to succeed. It need not contain the autounique key; if there is no
value for this key, it will be assigned automatically during the insert.

A manual query should be constructed if you want to add processing during the table load.
This is a set of SQL statements which determine how the load is to be executed. The
statements that make up the load query are executed upon each line of the input file, one at
a time.

Automatic Load Query

To make use of the automatic load query, designate the name of the table in the Table for
Auto Load column of the Characteristics of Download form. Then define the input file in the
sub-level form, Input Record Fields. In the Variable column, record the name of each table
column into which data should be inserted. Indicate its type and position (first and last
character). You can also add a description in the Title column.

Note: In a file with tab separators, column width is meaningless.

Manual Load Query

If you want to record a query manually, first define the input file in the Input Record Fields
sub-level form. On each line, record a variable that is input into a field, to be used in the load
query. For each variable, designate its type and define its position within the file. You can
also add a description (in the Title column).

Note: In a file with tab separators, variable width is meaningless.

Next, record the SQL statements making up the query in the Load Query sub-level form. You
can include ERRMSG and WRNMSG commands. An error message (ERRMSG) will cause
the load of a given input line to fail. The error message is then written in the ERRMSGS
table. The failure to load one input line has no effect on the loading of another. A warning
message is also written to the ERRMSGS table, but does not cause the input line to fail. Like
in forms and procedures, you can use message parameters :PAR1, :PAR2 and :PAR3. The
messages themselves should be recorded in the Error & Warning Messages form. SQL
statements are stored in the LOADTEXT table; messages are stored in the LOADMSG
table.

Tips:

• To check the SQL statements in your load query for syntax errors, prior to activation

Table Loads PDF last generated: Dec 10, 2024

Priority SDK Page 217

of the load, run the Check Syntax program by Action from within the Characteristics
for Download form.

• You can track changes to load queries once they have been included in prepared
version revisions. See Tracking Changes to Queries.

Loading the File

There are several ways to execute a table load:

• Run the Download a File program from the Table Load (Interfaces) menu.
• Activate the load from an SQLI step of a procedure, using the following syntax

(parameters are explained in the next section):

EXECUTE DBLOAD ‘-L’, ‘loadname’, ['-i', 'input_file'], ['-I'],
['-T', 'table', 'linkfile'], ['-g', 'debug_file'], ['-ns'],
['-N'], ['-E', 'unloaded_file'], ['-M'], ['-C'], ['-B'],

['-U'], ['-u'], ['-v'], ['msgfile'];

• Include the table load as a load step (type L) in a procedure, indicating the file name
as the first parameter. You can use the same parameters as in the previous option,
except that they are listed in the Procedure Parameters form (sub-level form of
Procedure Steps).

Note: The last two methods offer more options than the first.

Table Load Parameters

• 'loadname' — The File Name used to identify the table load in the Characteristics for
Download form (also the name of the load file).

• ‘-I’ (uppercase "i") — Use this option when you want the DBLOAD program to input
data from the file.in file (stored in the system\load directory). Alternatively, use the ['-
i', 'input_file'] option to specify a different input file.

• ‘-T’, table, linkfile — Use this option when you want the DBLOAD program to load
data to a linked copy of the designated table.

• '-g', 'debug_file' — This option creates a file that displays each query and its
execution. This is similar to other Priority debugging tools that offer the –g option
(see Debug Tools).

• ‘-ns’ — By default, the INTERFACE program displays a progress bar as the load is
executed. Use this option to disable this utility.

• '-N' — Use this option if you do not want the INTERFACE program to clear the
ERRMSGS table when executing a load. Instead, the program will append the
contents of the newest unloaded file and message file to the ERRMSGS table (see
below).

• '-E', 'unloaded_file' — Use these parameters to create a file of all lines from the
input file that failed to be loaded. This file will be stored in the system\load directory,
unless another path is specified. It can then serve as an input file in its own right,
once the problem that caused the load to fail has been solved.

• ‘-M’ — Use this option to have the INTERFACE program rename the input file to
file.bak .

• ‘-C’ — If the load table contains numeric values formatted as strings, use this option
to have the INTERFACE program remove commas from any numbers that appear in
strings.

• ‘-B’ — Use this option to have the INTERFACE program remove any text enclosed

Table Loads PDF last generated: Dec 10, 2024

Priority SDK Page 218

in square brackets.
• ‘-U’ — If the load table contains a USERS column, use this option to have the

INTERFACE program ignore data in this column (data are inserted with USER = 0).
• ‘-u’ — Use this option if you want the INTERFACE program to specify the current

user when messages are inserted into the ERRMSGS table. Otherwise, messages
are inserted with USER = 0.

• '-v' – Use this option if you want the DBLOAD program to check the structure of the
input file. If the type of a value (e.g., INT, REAL, DATE) is incompatible with the
expected type for that position, an error is generated and the file will not be loaded.

• 'msgfile' — The name of the file in which to hold messages. This file will be stored in
the directory from which the DBLOAD was activated (system\load or system\
load\company), unless another path is specified. It contains the following:

◦ A message indicating how many lines of the input file have been
successfully loaded.

◦ In the case of a fatal error (the structure of the input file was not defined,
there was no load query or there was a syntax error in one of the SQL
statements), a message explaining why the load failed altogether.

Viewing Load Messages

Any messages (error/warning) generated by the DBLOAD program will appear in the
Download Messages report (DBLOADERRS). These messages are stored in the
ERRMSGS table with the value L in the TYPE column, and USER = 0 (or USER =
SQL.USER if you use the ‘-u’ option. In every execution of a load, the messages from the
previous execution are deleted (unless you use the -N option).

Converting an Excel File to a Tab-delimited Text File for DBLOAD

Use the EXL2TXT command (from a trigger or Step Query of an SQLI step) to convert an
.xlsx file to the tab-delimited text file required for table loads.

Example:

EXECUTE WINAPP 'p:\bin.95', '-w', 'EXL2TXT.exe', :F, :T;
/* where p:> represents the full path to bin.95) */

The file is created with UTF-16 encoding. Only the first sheet in an Excel file will be
converted.

Table Loads PDF last generated: Dec 10, 2024

Priority SDK Page 219

Combining Table Loads with Form
Loads
You will often find it useful to combine table loads with form loads. That is, you create a
DBLOAD that loads data into an interim table, and then display such data via a form based
on that interim table. Users can use the interim table form to check the loaded data and to fix
records if necessary. You can also create a procedure to manipulate the data (e.g., to add a
C to all customer numbers) and allow users to run it by Action from the form.

When satisfied with results, a procedure can be run to execute your INTERFACE program
load. After the form load is completed, each record that was loaded successfully is flagged,
those that failed to be loaded can be fixed, and the load program can be executed again with
the '-repeat' option.

Example: The LOADDOCUMENTS_C procedure (Load Counts into Interim Table)
loads a file into the LOADDOCUMENTS_C form (Interim Table - Inventory
Counts). Then, the LOADDOCUMENTS_C2 procedure (Load Counts from Interim
Table) opens an Inventory Count document in the DOCUMENTS_C form. Note that
the LOADDOCUMENTS_C2 procedure executes the load by running the
INTERFACE program, whose first input parameter is the name of the form load.

Combining Table Loads with Form Loads PDF last generated: Dec 10, 2024

Priority SDK Page 220

Finding Form Interfaces

Introduction

You may find it useful to peruse (and possibly use) various components of the standard
interfaces provided with Priority. The following helps you to locate these interfaces.

Interfaces for a Specific Form

One helpful tool is the Form Interfaces (FORMINTERFACES) form, which is a sub-level of
the Form Generator. This form displays any interfaces in which the form participates. This is
not only useful when looking for interfaces, but also important information when you want to
revise the form in a way that impacts the interface (e.g., add a mandatory column).

Interfaces for a Specific Form Column

You can also view a list of all interfaces built for a given form column in the Interfaces for
Column (FCLMNINTER) form, which is a sub-level of the Form Columns form (itself a sub-
level of the Form Generator). This is not only useful when looking for interfaces, but also
important information when you want to revise the form column in a way that impacts the
interface (e.g., change its width).

Existing INTERFACE and DBLOAD Programs

There are a number of ways to find available form loads and table loads, both standard and
customized:

• Run the Procedure Steps (PROGREP) report (System Management → Generators
→ Procedures → Procedure Reports). In the input screen, designate steps of type I
(for form loads) or type L (for table loads).

• Form load only: Run the same report for procedures that have the INTERFACE
program as a step.

• Run the SQL Development (WINDBI) program (System Management → Generators
→ Procedures) to find the query that runs the form load or table load. From the
Queries menu, select Find String and then record 'EXECUTE INTERFACE' or
'EXECUTE DBLOAD' in the input screen.

Interfaces in General

There are a number of interface menus (e.g., for inventory counts, for sales invoices) that
include a table load procedure, an interim table form and a form load procedure. You may
find that the interim table form and form load procedure already meet your needs (e.g., if you
want to load an inventory count file of data collected from a peripheral device), so that you
only have to create a DBLOAD program. To find such interface components, retrieve by
LOAD* in the various generators (for forms, procedures and/or menus).

Finding Form Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 221

Duplicating Documents with an
Interface
Suppose you want to copy an entire sales order in order to create the same one for another
customer. You can use the form interface to do this. In the following example, a new sales
order is opened for a customer that is received as input, copying the order items, unit price,
discount, ordered quantity, order item remarks and order remarks.

Begin by defining the following in the Form Load Designer and its sub-level forms (System
Management → Database Interface → Form Load (EDI)):

Form Name Title Code (Record Type)
ORDERS Sales Orders 1
ORDERSTEXT Sales Orders - Remarks 2
ORDERITEMS Order Items 3
ORDERITEMSTEXT Order Items - Remarks 4

For the ORDERS form:

Load Table Column Form Column Name Order
TEXT1 CUSTNAME 1
TEXT2 DETAILS 2

For the ORDERSTEXT form:

Load Table Column Form Column Name Order
TEXT TEXT 1

For the ORDERITEMS form:

Load Table Column Form Column Name Order
TEXT1 PARTNAME 1
REAL1 PRICE 2
REAL2 PERCENT 3
INT1 TQUANT 4

For the ORDERITEMSTEXT form:

Load Table Column Form Column Name Order
TEXT TEXT 1

Next, create a new procedure with 2 input parameters. The first will be the customer for
which you want to open the new order; the second will be the order you want to copy. The

Duplicating Documents with an Interface PDF last generated: Dec 10, 2024

Priority SDK Page 222

procedure will have 2 steps:

• An INPUT step with 2 input parameters:

Parameter Name Pos Width Input (I/M) Type Column Name Table Name
CST 0 0 I LINE CUSTNAME CUSTOMERS
ORD 5 0 I LINE ORDNAME ORDERS

* An SQLI step. Define a parameter called GEN (FILE type). The step query should look like
this:

LINK CUSTOMERS TO :$.CST;
ERRMSG 1 WHERE :RETVAL <= 0;

:CUSTNAME = '';
SELECT CUSTNAME INTO :CUSTNAME
FROM CUSTOMERS
WHERE CUST <> 0;

UNLINK CUSTOMERS;
ERRMSG 2 WHERE :CUSTNAME = '';

/* The following commands run the interface defined above,
storing the output in a linked
file of the GENERALLOAD table, :$.GEN */
EXECUTE INTERFACE 'TEST_OPENSALESORD', SQL.TMPFILE,
'-o', '-L', :$.ORD, '-l', 'GENERALLOAD', :$.GEN;

LINK GENERALLOAD TO :$.GEN;
ERRMSG 1 WHERE :RETVAL <= 0;

UPDATE GENERALLOAD
SET TEXT1 = :CUSTNAME
WHERE LINE = 1;

UNLINK GENERALLOAD;

EXECUTE INTERFACE 'TEST_OPENSALESORD',:$.MSG,'-L',:$.GEN;

LINK GENERALLOAD TO :$.GEN;
ERRMSG 1 WHERE :RETVAL <= 0;

:ORD = 0;
SELECT ATOI(KEY1) INTO :ORD
FROM GENERALLOAD
WHERE LINE = 1
AND LOADED = 'Y';

UNLINK GENERALLOAD;
ERRMSG 3 WHERE :ORD = 0;

:ORDNAME = '';
SELECT ORDNAME INTO :ORDNAME
FROM ORDERS

Duplicating Documents with an Interface PDF last generated: Dec 10, 2024

Priority SDK Page 223

WHERE ORD = :ORD;

/* Windows: The next command opens the Sales Orders form.
In Priority Web, add the ORDERS form as a separate step
in the procedure*/
EXECUTE BACKGROUND WINFORM 'ORDERS','',:ORDNAME, '','2';

Duplicating Documents with an Interface PDF last generated: Dec 10, 2024

Priority SDK Page 224

The STACKERR Table
When running simple interfaces, the standard ERRMSGS is sufficient for handling errors.
However, as complexity increases, you may encounter issues with using it:

• If you are running multiple interfaces, subsequent interfaces will overwrite errors
from the earlier ones.

• Error messages do not necessarily provide enough context for the user to correct. If
you are adding multiple orders via interface, an error in ORDERITEMS that states
that a part is inactive does not tell the user in which of the new orders the issue
arose.

• If the same error appears twice for the same interface, the ERRMSGS table may fail
to store the second instance, as its unique key is USER, TYPE, MESSAGE.

These issues can be resolved by using the -stackerr option. This will insert all error
messages into the STACK_ERR table, rather than using the ERRMSGS table to store
interface messages. The original LINE value from the load table will be stored in the
INTDATA1 column of this table, and the error message will be stored in the MESSAGE
column.

This provides you with more context to compare against the data in the load table used in the
interface. You can use this added information to more clearly present error information to the
user (in a dedicated report or form).

This option is also useful when you write a procedure that executes more than one interface.
In order to maintain the messages generated by the first interface, use the '-stackerr' option
and assign each interface a different parameter for the linked file. This will create a separate
linked file of the STACK_ERR table for each interface you execute.

Example: To open sales orders based on price quotations, and then open a
shipping document based on the new sales orders, the following code would be
used. (In this example, it is assumed that the initial status for sales orders is
flagged as Allow Shipmt/ProjRep.)

SELECT SQL.TMPFILE INTO :G1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :G2 FROM DUMMY;
SELECT SQL.TMPFILE INTO :S1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :S2 FROM DUMMY;

LINK GENERALLOAD ORD TO :G1;
GOTO 99 WHERE :RETVAL <= 0;

LINK GENERALLOAD DOC TO :G2;
GOTO 99 WHERE :RETVAL <= 0;

INSERT INTO GENERALLOAD ORD(LINE,RECORDTYPE,TEXT2)
SELECT SQL.LINE, '1', CPROFNUM
FROM CPROF
WHERE PDATE = SQL.DATE8;

EXECUTE INTERFACE 'OPENORDBYCPROF', SQL.TMPFILE,
'-L', :G1, '-stackerr', :S1;

The STACKERR Table PDF last generated: Dec 10, 2024

Priority SDK Page 225

INSERT INTO GENERALLOAD DOC(LINE,RECORDTYPE,TEXT1)
SELECT SQL.LINE, '1', ORDNAME
FROM ORDERS, GENERALLOAD ORD
WHERE ORD.LOADED = 'Y'
AND ORDERS.ORD = ATOI(ORD.KEY1);

UNLINK GENERALLOAD ORD;

EXECUTE INTERFACE ' OPENDOC', SQL.TMPFILE,
'-L', :G2, '-stackerr', :S2;

UNLINK GENERALLOAD DOC;

LINK STACK_ERR S1 TO :S1;
GOTO 99 WHERE :RETVAL <= 0;

SELECT * FROM STACK_ERR S1 FORMAT;
UNLINK STACK_ERR S1;

LINK STACK_ERR S2 TO :S2;
GOTO 99 WHERE :RETVAL <= 0;

SELECT * FROM STACK_ERR S2 FORMAT;
UNLINK STACK_ERR S2;

LABEL 99;

The STACKERR Table PDF last generated: Dec 10, 2024

Priority SDK Page 226

Debug Tools

Introduction

Priority gives you the option of executing entities (forms, procedures and interfaces) using
debug mode. When you execute the entity in debug mode, SQL queries, server responses,
variables used and more are recorded in a file you specify. This is very useful for debugging
forms, procedures and interfaces.

You can also debug simple reports, i.e., reports run from the menu or by Action (as opposed
to processed reports, which are executed by a procedure - in which case you debug the
procedure). Finally, you need to optimize forms, reports and SQL queries.

23.0

Important! Debug commands will not work when the DEBUGRESTRICTED system constant
is set to 1. In freshly installed systems, the default is 1, so you will have to change it to 0 to
use debugging tools.

Debugging a Form, Procedure or Interface

You can debug a form or procedure by running it via the Run Entity Priority tool. From the
Tools top menu in the Windows interface or the Run menu in the web interface, select Run
Entity (Advanced). In the command dialog that opens:

To run a form in debug mode in the web interface:
FORM_NAME -trc debug_file

To run a form in debug mode in the Windows interface:
WINFORM FORM_NAME -trc debug_file

Example:

WINFORM ORDERS -trc ..\..\orders.dbg /* in Windows */
ORDERS -trc c:\tmp\orders.dbg /* in web interface */

Note: You can also use the older version of the debug tool by specifying -g instead of -trc.
Note however that -g provides less information in the debug file than -trc, and is organized
less effectively for the process of debugging.

To run a procedure in debug mode in the Windows interface:
WINPROC -P PROCNAME -trc debug_file

To run a procedure in debug mode in the web interface:
PROCNAME.P -trc debug_file

Example:

WINPROC -P WWWSHOWORDER -trc ..\..\wwwshoword.dbg /* in Windows */
WWWSHOWORDER.P -trc c:\tmp\wwwshoword.dbg /* in web interface */

Debug Tools PDF last generated: Dec 10, 2024

Priority SDK Page 227

Note: You can also run a procedure in debug mode from within the Procedure Generator via
an Action.

To run a Priority Lite procedure in debug mode (in the Windows interface only): WINHTMLH
PROCNAME -trc debug_file

Example:

WINHTMLH WWWORDERS -trc ..\..\wwworders.dbg

To execute a form load in debug mode, you need to include two additional parameters when
running the INTERFACE program: the first must be '-debug' and the second must be the
name of the debug file. The program then records all queries that were executed into the
debug file.

Example:

EXECUTE INTERFACE LOADORDERS SQL.TMPFILE, '-debug', '..\..\tmp\dbg.txt';

To execute a table load in debug mode, you need to include two additional parameters when
running the DBLOAD program: '-g', as well as the name of the debug file. Again, the
program records all executed queries into the designated file.

Debugging a Simple Report

To debug a simple report (one not run from a procedure), dump the report's query using the
SQL Development (WINDBI) program (System Management → Generators → Procedures).
From the Dump menu, select Report and then record the internal name of the report in
question. Results, for example, look like this:

/*
*
* Report ORDBYPROJMANAGER : Orders per Project Manager
*
*/
/* Orders per Project Manager */
SELECT USERS.USERLOGIN AS 'Project Manager',
CPROFTYPES.TYPECODE AS 'Type of Sale (Code)',
CPROFTYPES.TYPEDES AS 'Type of Sale-Descrip',
ORDERS.CURDATE AS 'Order Date',
ORDERS.ORDNAME AS 'Order',
DOCPROJ.PROJDES AS 'Project',
ORDSTATUS.ORDSTATUSDES AS 'Order Status',
ORDERS.DETAILS AS 'Details',
ORDERS.DISPRICE AS 'Total Price w/o Tax',
CURRENCIES.CODE AS 'Curr'
FROM DOCUMENTS, CURRENCIES, ORDSTATUS, DOCPROJ, ORDERS,
CPROFTYPES, USERS
WHERE (ORDSTATUS.MANAGERREPOUT <> 'Y')
AND (ORDERS.ORDSTATUS = ORDSTATUS.ORDSTATUS)
AND (ORDERS.ORDTYPE = CPROFTYPES.CPROFTYPE)
AND (ORDERS.PROJ = DOCUMENTS.DOC)
AND (ORDERS.CURRENCY = CURRENCIES.CURRENCY)
AND (DOCPROJ.MUSER = USERS.USER)
AND (DOCUMENTS.DOC = DOCPROJ.DOC)

Debug Tools PDF last generated: Dec 10, 2024

Priority SDK Page 228

AND (1=1)
ORDER BY1 ASC, 2 ASC, 4 ASC, 5 ASC;

Note: You can also run a report in debug mode from within the Report Generator via an
Action

Optimization

Whenever you customize a Priority entity, it is important to optimize that entity:

• After adding columns to an existing form, you must check the optimization of the
form.

• After customizing a simple report or creating a new one, you should check the
report.

• When writing any SQL query (inside a form trigger, procedure step or load query),
you should check optimization of the query you wrote.

To optimize, run the SQL Development (WINDBI) program. From the Optimization menu,
select the appropriate option.

Note: For SQL queries, you can also select + optimizer from the Execute menu. Or you can
select + execution (from the same menu), which executes the query and show the steps of
execution; for each step, it also indicates how many records where retrieved.

Table Access

There are three methods of table access:

• Direct — One specific record is retrieved.
• Skip — Some records are retrieved according to keys.
• Sequential — All records are retrieved.

Generally speaking, in form optimization, only one table should have a sequential access
(the form's base table). All other tables should have direct access.

Example: If you check the optimization of the ORDERS form, only the ORDERS
table should have sequential access. The rest should have direct access.

If the form is a sub-level (e.g., ORDERITEMS), the form's base table should have skip
access. In this context, if a table has a key with more than one column (e.g., {ORD, KLINE}
in the ORDERITEMS table), a condition on the first column of the key will create skip access.
Optimization of the entity will determine how quickly it will be executed (how quickly records
are going to be displayed in a form or how long execution of a report or procedure will take).

Note that the query is actually passed to the database engine (SQL), which determines the
actual order of tables. Nonetheless, the optimization can help you to easily detect a query
that misses some joins or a table that lacks some keys. You should try to avoid sequential
access to the tables, as that usually means the query will be slow.

Advanced Debugging

In addition to the above debugging options available from within Priority, you may

Debug Tools PDF last generated: Dec 10, 2024

Priority SDK Page 229

occasionally wish to inspect the queries being sent to the database itself (SQL Server or
Oracle).

If no profiler is installed, you can open Priority in trace mode, so that all queries sent to the
database are written to one or more trace files.

To open Priority in this mode, you must first set the directory in which trace files will be
saved (e.g.,C:\tmp). To do so, open a command line and execute one of the following
commands:

When working with a SQL Server installation: SET SSDEBUG=C:\tmp

When working with an Oracle installation: SET ORADEBUG=C:\tmp

Note: You must specify an existing folder.

Next, open Priority from the command line. The easiest way to do this is to record the target
path of your desktop shortcut for Priority (e.g., D:\priority\bin.95\WINMENU.exe).

All queries that are sent to the database while working in this environment will be written to
trace files, which are saved in the specified folder.

Logging

Message Severity Levels

The following is the list of message severities, in ascending order (1 being the lowest
severity, 6 being the highest).

Severity Level
JOURNAL_DEBUG 1
JOURNAL_TRACE 2
JOURNAL_INFO 3
JOURNAL_WARNING 4
JOURNAL_ERROR 5
JOURNAL_FATAL 6

Usage in Priority Procedures

EXECUTE JOURNALP 'level', 'message';

Example: The following code will cause a message of a given severity level to be
written to the server log.

:MSG = "Statement failed to execute. Please help.";
/*message to be written to server log */

:SEV = 4;
/*message severity level */

[Some group of SQL statements that will fail]
/* on failure */

Debug Tools PDF last generated: Dec 10, 2024

Priority SDK Page 230

EXECUTE JOURNALP :SEV, :MSG;

Tabula.ini Definitions

In order to control which messages will be recorded to the server log, define the following
[Log] section in the tabula.ini file:

[Log]
Server Path='path_to_server_log' (e.g., S:\\Priority\\log)
Server Level='minimum_level'(e.g., 4)
Client Path='path_to_client_log'(e.g., C:\\tmp\\priority\\log)
Client Level='minimum_level'(e.g., 4)

All messages (both automatic and manual) having a severity level greater than or equal to
the 'minimum_level' will be recorded in the log. Specifying 0 is equivalent to 5; that is,
messages with levels 5 or 6 will be recorded in the log. To record messages of any severity,
specify a 'minimum_level' of 1.

If you have added JOURNAL commands but are not seeing the results immediately, it may
be related to server buffering. When buffering is on, the server delays log writes until the
process is over (e.g. procedure ends or form is closed).

You can disable server buffering by setting the Server Buffered option to 0 under the [Log]
section of the tabula.ini file.

Server Buffered=0

Debug Tools PDF last generated: Dec 10, 2024

Priority SDK Page 231

Installing your Customizations

Steps for Creating Version Revisions

Version revisions are a built-in tool for moving customizations from one Priority installation
to another. Priority automatically keeps track of any modifications you make to any entity. All
you need to do is group these revisions together and prepare a shell file using standard
forms and programs.

1. Enter the Version Revisions form (System Management → Revisions). Record a
short description of the customization in question and fill in the mandatory columns
in this form. A number will be assigned to the revision automatically.

2. Enter the sub-level form, Revision Steps. A detailed list of modifications appears by
code. Flag whichever modifications you wish to include in the shell file. They should
all be related to the customization in question. The order in which you link these
lines determines their order in the upgrade file.

Note: The lines in the Revision Steps form are recorded in the name of the user
who made the modification. This way, if you have more than one programmer, each
can track his/her own changes.

3. Once you have linked all the relevant modifications, create the shell file by running
the Prepare Upgrade program by Action from the Version Revisions form. The shell
file will be called NN.sh (where NN is the number assigned to the revision) and
stored in the system\upgrades directory.

4. If you are creating a version revision for a system in another language, see the
instructions in Customizations: Installing the Language Dictionaries

Explanation of the Modification Codes

Modification Code Description
DBI Update of the database (tables, table columns, keys).
DELDIRECTACT Deletion of an Action.
DELFORMCOL Deletion of a form column.
DELFORMLINK Deletion of the link between a form and its sub-level.
DELMENULINK Deletion of the link between a menu and its menu item.
DELPACKENT Deletion of an entire system package.
DELPACKEXEC Deletion of a link between a package and an entity.
DELPROCMSG Deletion of a procedure message.
DELPROCSTEP Deletion of a procedure step.
DELREPCOL Deletion of a report column.
DELTRIG Deletion of a form trigger.
DELTRIGMSG Deletion of a trigger message.
DELWORDTMPL Deletion of a Word template.
TAKEDIRECTACT Link an Action to a form.

TAKEENTHEADER
Revision to the attributes of an entity (form, report, menu, procedure,
interface), such as its title; in the case of a form, also revision to its

Installing your Customizations PDF last generated: Dec 10, 2024

Priority SDK Page 232

Modification Code Description
default design.

TAKEEXTMSG
Addition/revision of a compiled program message (relevant to adding a
custom general message in GENMSG)

TAKEFORMCOL Any type of revision to a form column (e.g., title, sorting, joins).
TAKEFORMLINK Linking of a form to its sub-level.
TAKEMENULINK Linkage of a menu item to its menu.
TAKEOUTPUTTITLE Addition/revision of the output title of a report
TAKEPACKENT Addition/revision of an entire system package
TAKEPACKEXEC Addition/revision of a specific entity in relation to a system package
TAKEPACKTITLE Revision to the title of a system package
TAKEPROCMSG Addition/revision of a procedure message.

TAKEPROCSTEP
Addition/revision of any part of a procedure step (e.g., parameters,
step queries).

TAKEREPCOL Any type of revision to a report column (e.g., title, sorting, grouping).
TAKESINGLEENT Addition/revision of an entire entity.
TAKETRIG Addition/revision of a form trigger.
TAKETRIGMSG Addition/revision of a trigger message.
TAKEWORDTMPL Addition/revision of a Word template included in the revision
TAKEHELP Addition/revision of online help for the designated entity.

Additional Information for Specific Modification Codes

While most modification codes are recorded automatically, some need to be recorded
manually.

TAKEWORDTMPL

This modification code instructs the system to take a specific word template and add it to the
revision. This revision needs to be filled in manually. Fill in the following information:

• Entity (Form or Procedure) for the Word template.
• Entity Type
• Message number equal to the identifier of the template in the TRIGMSG table. Note

that this will always be a negative number. Query for finding template message
numbers:

SELECT * FROM TRIGMSG
WHERE EXEC = (SELECT EXEC FROM EXEC
WHERE ENAME = 'WWWSHOWORDER' AND TYPE = 'P')
AND NUM < 0
FORMAT;

TAKEHELP

This modification code takes the help for a specific entity or form column and adds it to the
revision.

• Entity
• Entity Type
• Forms only - you can specify a specific column to take help for. If omitted, help for

Installing your Customizations PDF last generated: Dec 10, 2024

Priority SDK Page 233

the entire form and all its columns will be taken.
TAKEHELP for procedures, menus and reports will always take all help for the
entity.

Tips for Working with Revisions

• Do not create a version revision until you have finished programming. This ensures
that all revisions are numbered in the correct sequence (i.e., when multiple
programmers are working in parallel).

• Complete modifications on an entity before linking to the TAKESINGLEENT line.
This is because, if you create a new entity, you will find a relevant record with the
TAKESINGLEENT code in the Revision Steps form. Once you link this record to the
version revision, any additional modification to that entity will receive a separate
record with a separate code.

Example: You create a new form and link the relevant modification to a
TAKESINGLEENT line. If you then continue to add columns to the form,
you will receive additional TAKEFORMCOL lines for each new column.
However, you should not wait more than a working day. When
programming takes more than one day, try to prepare the upgrade at the
end of each day. This way, at the end of the programming, you will not
have to deal with a very large number of records in the Revision Steps
form.

• There are also situations in which the order of the lines in the revision is important.
Here are some examples:

◦ If you create a new document, the reports included in the document must
appear before the procedure itself.

◦ When a procedure step includes a new form interface, the interface must
be included in the revision before the procedure.

◦ When you add a new column to a table and then use this column in a form,
you must first flag the DBI operation and only then flag the
TAKEFORMCOL line.

• Do not prepare the same upgrade twice. If a version revision needs to be modified
after the upgrade has been prepared, create a new version revision with your
modifications and run the Prepare Upgrade program for the new revision.

Tracking Changes to Queries

Several form and reports allow you to keep track of changes in queries appearing in form
triggers, SQLI procedure steps and load definitions, once they have been included in a
prepared version revision.

Note: Query changes are maintained per version revision. After making your changes, open
and prepare a new version revision. If you reprepare an existing one, the previous change
will not be saved, as the new query text will overwrite the old one.

To view previous versions of a column trigger, a row or form trigger, an SQLI step or a load
definition:

1. Enter the relevant form (Form Column Triggers, Row & Form Triggers, Procedure
Steps or Characteristics for Download, respectively) and retrieve the appropriate

Installing your Customizations PDF last generated: Dec 10, 2024

Priority SDK Page 234

record.

2. Enter the Previous Versions sub-level form. This displays details of all version
revisions that include the current query: the date of the revision, its number, a short
description, the version number and the signature of the programmer.

Note: Only revisions created after Priority version 17.3 is installed will appear.

3. Enter the next sub-level form, Previous Versions – Text, to view the version of the
query.

To view differences between the selected version of the query and other versions:

1. Return to the Previous Versions form and select Track Changes from the list of
Actions.

2. In the input screen, under Text to Compare, choose between the Current Version
(the latest version in effect) and the Previous Version (the one immediately prior to
the selected revision). Additions are marked in blue; deletions are marked in red
strikethrough.

Installing the Revision

Caution: If your revision includes changes to tables (DBI steps), you should ensure all users
exit the system before installing the revision.

To install the revision:

1. If installing in the Windows interface, open Priority as an administrator.
2. Run the System Management > Revisions > Install Upgrade program.
3. In the input, browse to the shell file you created.

Installing your Customizations PDF last generated: Dec 10, 2024

Priority SDK Page 235

Customization - Language
Dictionaries

Introduction

When installing customizations, if users at a customer site use a language other than
English, you will need to install the revisions in more than one language. This requires, for
instance, that any revision is translated to the desired language in the language dictionaries
provided by Priority (System Management → Dictionaries → Translation).

Preparing Upgrades for Other Languages

1. Before you even begin programming for this customer, enter the System
Constants form (System Management → System Maintenance → Constant Forms)
and change the value of the UPGTITLES constant to 0. Consequently, no titles (in
any language) will be stored in the upgrade file; rather, they will be inserted into a
second file (based on the upgrade file) via another program.

2. After every run of the Prepare Upgrades program, run the SQL Development
program and record the following query:

EXECUTE INSTITLE `fromfile` `tofile`;

where:

• fromfile is the upgrade file you have just created (i.e., ..\system\upgrades\NN.sh,
where NN is the version number),

• tofile is the output file that will include the titles in all languages (the base language
of English and any languages for which there are translations in the dictionaries).

Important! When preparing an upgrade for a system that has a different base language than
your own system (e.g., yours is a Hebrew installation, while the customer's is an English
installation), you will want the titles to be taken from the translation (System Management →
Dictionaries → Translation). In this case, record the following query instead:

EXECUTE INSTITLE '-l', langcode, `fromfile,` `tofile`;

where:

• langcode is the code of the language from which to take the titles (e.g., 3 for
American English)

• fromfile is the upgrade file you have just created,
• tofile is the output file that will include the titles in the target language.

1. From the Execute menu, select SQLI Interpreter.

Examples: For version revision number 34, the following command would be
recorded:

EXECUTE INSTITLE '..\..\system\upgrades\34.sh',
'..\..\system\upgrades\34-inst.sh';

Customization - Language Dictionaries PDF last generated: Dec 10, 2024

Priority SDK Page 236

The new file in system\upgrades, 34-inst.sh, will contain the titles of the upgrade
you created.

For the same version, when upgrading from your own Hebrew installation to the
customer's English installation, the following command would be recorded:

EXECUTE INSTITLE -l', '3', '..\..\system\upgrades\34.sh',
'..\..\system\upgrades\34-inst.sh ';

Modifying DBI Operations in the Revision

If you began programming for the customer without first updating the UPGTITLES constant,
you will have to modify all DBI operations in the revision as follows:

Creating a New Table

Instead of:

CREATE TABLE PRIV_NEWTABLE 'New Table Title' 1
COL1(CHAR,3,'Column 1')
COL2(CHAR,32,'Column 2)
UNIQUE(COL1);

Use the following:

CREATE TABLE PRIV_NEWTABLE '[Ktitle : PRIV_NEWTABLE]' 1
COL1(CHAR,3,'[Column: PRIV_NEWTABLE/COL1]')
COL2(CHAR,32,'[Column: PRIV_NEWTABLE/COL2]')
UNIQUE(COL1);

Creating a New Table Column

Instead of:

FOR TABLE MYTABLE INSERT MYNEWCOL
(INT,13,'My New Column Title');

Use the following:

FOR TABLE MYTABLE INSERT MYNEWCOL
(INT,13,'[Column: MYTABLE/MYNEWCOL]');

Changing a Table Title

Instead of:

FOR TABLE MYTABLE CHANGE TITLE TO 'New Title';

Use the following:

FOR TABLE MYTABLE CHANGE TITLE TO '[Ktitle : MYTABLE]';

Customization - Language Dictionaries PDF last generated: Dec 10, 2024

Priority SDK Page 237

Changing a Table Column Title

Instead of:

FOR TABLE MYTABLE COLUMN MYCOL
CHANGE TITLE TO 'New Title';

Use the following:

FOR TABLE MYTABLE COLUMN MYCOL
CHANGE TITLE TO [Column: MYTABLE /MYCOL];

When you finish modifying all DBI steps for the revision in question, continue with steps 2
and 3 under Preparing Upgrades for Other Languages.

Customization - Language Dictionaries PDF last generated: Dec 10, 2024

Priority SDK Page 238

Creating and Modifying User Report
Generators

Introduction

The purpose of a user report generator is to enable users to build their own reports. There
are many predefined user report generators in the system, such as the Customer Data
Report Generator and the Customer Invoices Report Generator.

If you have created a customized module in Priority, you may find it useful to design a new
report generator. Moreover, if you have added columns to a form that already has a user
report generator (e.g., Sales Invoices), you may want to add the new columns to the existing
generator. In both cases, as you cannot revise a standard report generator, you have to
make copies of all the component entities.

Components of the Report Generator

Whether you are creating your own report generator or modifying a standard one, you have
to create three new Priority entities:

• A base report, whose columns form the basis of the user report (defined in the
Report Generator).

• A form with which the report is constructed (defined in the Form Generator); this
form retrieves the records from the generator's base report.

• A procedure that runs the user-defined report (defined in the Procedure Generator).

Creating Your Own Report Generator

Constructing the Base Report

For your own report generator, you need to construct a new report in the usual way.
However, in order for it to serve as a base report, the following rules must be maintained as
well:

• Any column that the user can choose to include in the generated report must have a
revised title.

• Any column that will be used for grouping must have a value in the Group by column
and an R in the Group Func. column.

• For any column that might be used for input, flag the Input column.

Note: Remember to check all joins, as well as report optimization.

Constructing the Form

To create the form, you first copy the standard ASSETREP form and then make certain
adjustments to the copy.

Creating and Modifying User Report Generators PDF last generated: Dec 10, 2024

Priority SDK Page 239

Warning! This is the only circumstance in which it is permissible to copy a standard Priority
form. Copying a form for any other purpose will have adverse effects.

1. To copy the standard ASSETREP form to a new form, from the Tools top menu in
the Windows interface or the Run menu in the web interface, select Run Entity
(Advanced…) and write the command: WINPROC -P COPYFORM

This will open a new input parameter window, where you need to record the internal name of
the form you want to copy (ASSETREP), as well as the name and title to be assigned to the
new form.

Note: If you wish to create a customized user report generator from a standard report
generator form other than ASSETREP, make sure to choose one in which the expression
defined for the TYPE column is r (in the Form Column Extension sub-level of the Form
Generator). While different values in the TYPE column were once used to distinguish
between different types of user generated reports, newer report generators all use the same
TYPE (r), and assign each report name a different prefix instead.

1. The PRE-FORM trigger in the copied form should look like this:

:REPEXEC = 0;
SELECT EXEC INTO :REPEXEC FROM EXEC
WHERE ENAME = ' ASSETREP' AND TYPE = 'R';
:PREFIX = 'AST';
:KEYSTROKES = '%{Exit}';

Make the following changes:

1. Change ASSETREP to the name of the base report you created earlier.

2. Change the value of :PREFIX to another three-letter string (e.g., :PREFIX =
'PST';).

3. In the Form Columns sub-level form, move to the ENAME column. Then
enter the Form Column Extension sub-level form and change the
expression from LIKE 'AST%' to match the string you used in the previous
step (LIKE 'PST%').

4. Fix the POST-FIELD triggers for the TITLE and ENAME columns in the
same manner. That is, where ENAME LIKE 'AST%' appears, revise this to
ENAME LIKE 'PST%'.

5. Link the GREPCLMNS form as a sub-level of your new form.

Constructing the Procedure That Runs the Report

1. Copy the standard RUNCUSTREP procedure to a new procedure.
2. In your new procedure, revise the SQLI query in step 10:

1. Change the value of the :TYPE variable from g to r.
2. Change the value of the :PAT variable to match the prefix in your new form

(e.g., :PAT = 'PST';).
3. If the base report you constructed is to receive input parameters from the procedure

(e.g., a date range, a flag to display open orders only), define these parameters in
an input step and in the runreport step. (See, e.g., the FDT and TDT parameters in
the RUNPROJREP procedure.)

Creating and Modifying User Report Generators PDF last generated: Dec 10, 2024

Priority SDK Page 240

4. Change the name of the report in the last procedure step to match the new base
report you created.

Allowing User Access to the Report Generator

• Link the new form and procedure to the relevant menu.

Adding New Columns to a Standard Report
Generator

Any revision to a standard report generator – even if all you want to do is to add new
columns – requires you to create copies of all component entities and make revisions to the
copies.

The difference between modifying a report generator in this way and creating a completely
new generator lies in the standard entities that you copy from. Rather than using a new base
report, the ASSETREP form and the RUNCUSTREP procedure as your sources, you should
copy from the standard base report that you are revising and its accompany form and
procedure.

1. Copy the standard base report to which you want to add columns, creating your own
report in which you will make all needed customizations (e.g., copy INVOICEREP to
XXXX_INVOICEREP).

2. Copy the standard form which shares the same name as the standard base report
(e.g., copy INVOICEREP to XXXX_INVOICEREP). Revise the new form as
described above with respect to the ASSETREP form.

3. Copy the relevant RUN*REP procedure of the report you copied (e.g., copy
RUNINVOICEREP to XXXX_RUNINVOICEREP), revising the appropriate SQLI
query line to :TYPE = 'r'; :PAT = 'XXX'; (where XXX is the prefix you assigned in the
form) and changing the name of the report in the last procedure step. This is similar
to the case when you construct a new report generator.

4. Link the new form and procedure to the relevant menu.

Creating and Modifying User Report Generators PDF last generated: Dec 10, 2024

Priority SDK Page 241

Creating and Modifying BI Reports

Introduction

To create a new BI report or modify an existing one, you have to copy (and then revise)
several standard procedures and reports:

• procedures that prepare the data for the BI
• the BI report itself
• the procedure that runs the BI report.

You should use as your point of departure an existing BI report that yields data similar to the
results you wish to obtain. The following illustrates the process using the Order Analysis (BI)
report and its accompanying procedures, using the PRIV prefix to identify the company in
which the customization is made. This should be the same prefix you use for all entities that
you add to Priority for the customer in question.

Procedures that Prepare the Data

1. Copy the PREPORDERSCUBE and PREPORDERSCUBE1 procedures and create
two customized procedures: PRIV_PREPORDERSCUBE and
PRIV_PREPORDERSCUBE1.

2. In the PRIV_PREPORDERSCUBE procedure, change the procedure in step 20
from PREPORDERSCUBE1 to PRIV_PREPORDERSCUBE1.

3. In the Step Query form for the PRIV_PREPORDERSCUBE1 procedure, make the
following revisions:

◦ Change the TYPE variable from 'ORDERS' to 'PRIV_ORDERS'.

Note: As the length of the TYPE column in the EISCUBES table is 12,
assign a value to the TYPE variable that is less than 12 characters.

◦ Change the query that inserts the records into the EISCUBES table.
◦ Find the line :ENAME = 'EISORDERSREP' (near the bottom) and change

the value of the ENAME variable to the name of the customized report
(PRIV_EISORDERSREP).

The BI Report

1. Copy the EISORDERSREP report and create the customized
PRIV_EISORDERSREP report.

2. In the Report Column Extension sub-level form, change the value of the TYPE
column from: = 'ORDERS' to = 'PRIV_ORDERS' (i.e., the value of the TYPE
variable in PRIV_PREPORDERSCUBE1).

3. Drill-down options are created by defining the relevant report columns for input (I).
You can do so for any of the following columns:

◦ CUSTNAME
◦ PARTNAME
◦ BRANCHNAME

Creating and Modifying BI Reports PDF last generated: Dec 10, 2024

Priority SDK Page 242

◦ CTYPECODE
◦ FAMILYNAME
◦ ACCFAMILYNAME
◦ AGENTCODE
◦ TYPECODE
◦ COUNTRYCODE

: Note: These report columns must have a value in the Group by column.

4. In order to provide additional drill-down options for the report, you can redefine any
of the above report columns, essentially "substituting" one drill-down option with
another. For example, suppose you want to enable users to view sales data for a
specific type of sale, broken down by the unit of sale (e.g., hr, kg, ea). Let us further
assume that the report in question need not include a drill-down option for the
country of sale. In such a case, you can revise the definitions for the
COUNTRYCODE column, so that the resulting report can display sales data broken
down by unit, rather than by country. To do so, revise the value of the Target Form
Name column in the Report Column Extension sub-level of the Report Columns
form as necessary (e.g., specify UNIT as the Target Form Name). You can then
change the revised titles of any of these columns as necessary (e.g., for the
COUNTRYCODE column, you can specify the revised title Part Units).

5. Modify the rest of the report to suit your needs (e.g., hide unnecessary columns).

Note: Any column you wish to display in a BI report must meet at least one of the
following conditions:

◦ The table name and table column defined for the report column also appear
in the EISCUBES report.

◦ The report column is assigned the same column expression as one of the
columns in the EISCUBES report.

◦ The report column is assigned the same title as one of the columns in the
EISCUBES report.

The Procedure that Runs the Report

1. Copy the EISORDERSREP procedure and create the customized
PRIV_EISORDERSREP procedure.

2. In step 70 (SQLI), change the value of the ENAME variable from 'EISORDERSREP'
to 'PRIV_EISORDERSREP' (the name of the customized report).

3. Change the report in step 200 from EISORDERSREP to PRIV_EISORDERSREP.
4. Copy the base pages of the original procedure (the html file in system\html and, if

needed, the html file in system\html\lang.XX, where XX is the language code
defined in the Languages form), and change the file names to match the new
procedure.

Note: After upgrading the system to a new version, if the customized report does not work in
the same way as the standard report, it is recommended to copy the base page from the
standard BI procedure again.

Creating and Modifying BI Reports PDF last generated: Dec 10, 2024

Priority SDK Page 243

Priority Lite and Dashboards

Introduction

The HTML procedures used to display reports on the Internet in Priority Lite or data in
Priority Dashboards are very similar to regular procedures in Priority . However, there are
some basic differences, including additional features that support the special needs of these
procedures. There are also some new features that allow you to specially design the
displayed reports. This section focuses on those innovations.

These procedures are displayed on the Internet or in Dashboards by means of HTML pages
that are generated by each INPUT step in the procedure. One or more of the following can
be displayed in these pages:

• reports
• input parameters from the procedure
• procedure messages (including error messages)
• graphic web parts.

A base HTML page serves as a template for the page that is displayed. This base page
defines where to situate the reports, parameters and messages displayed by the procedure.
It can then be revised, and pictures, links and text may be added.

Before you can create the base page for each INPUT step, however, you must construct the
HTML procedure and its reports.

The Structure of HTML Procedures

There are two essential structural differences between HTML procedures and regular ones:

• Reports can only be displayed in an INPUT step.
• The procedure does not run continuously from beginning to end. Rather, it is

interrupted at each INPUT step, at which time it generates an HTML page. It
continues where it left off when the user clicks Go (or any other link) on that page.

Displaying Reports

1. Generate the report in a REPORT step.
2. Include in that step, in addition to the parameters that are transferred to the report,

an additional parameter of ASCII type with the value OUTPUT (do not use quotation
marks).

3. Use the same parameter in a (later) INPUT step, but this time without any value.

Note: There is no limit to the number of reports that can be displayed in the same INPUT
step.

Example: In a procedure that displays the Sales Orders form, you can define three
reports: one for the header, another for the order items and a third for totals. The
procedure in question generates the three reports (in separate REPORT steps)

Priority Lite and Dashboards PDF last generated: Dec 10, 2024

Priority SDK Page 244

and then displays them together in the same HTML page (i.e., in the same INPUT
step).

Retaining Variable Values After the Procedure
Stops

As the procedure does not run continuously, but rather stops and starts, its link files and
variables “disappear” whenever it is interrupted. To retain the value of a variable:

1. Define it as a procedure parameter.
2. Make sure it is included as a parameter in the INPUT step at which the procedure

stops.

The variables in question are recorded in a hidden section of the HTML page, and their
values are returned to the procedure when it is run again.

Priority Lite and Dashboards PDF last generated: Dec 10, 2024

Priority SDK Page 245

User Identification for Priority Lite/
Dashboards

Introduction

Often, there is a need to identify the user who runs the procedure – as a customer, vendor or
internal user – and to display relevant user data (e.g., address). User identification is carried
out via the company phone book or the list of users (that is, the data in the PHONEBOOK,
PHONEBOOKA and USERS tables).

To have the procedure identify the user before it runs:

• In the Procedure Generator, choose the appropriate value in the Internet Access
column. Specify Y for all (customers, vendors and internal users); T for walk-in
customers (e.g., for the Storefront) and U for internal users only (e.g., for internal
reports, data input by users). Or specify I for no privilege checks.

The value of the first parameter in the cursor is saved in a variable called HTMLVALUE. This
is a system variable of CHAR type, and it must be converted to an integer using the ATOI
function. Using HTMLVALUE you can retrieve the relevant record (the one being printed)
from the main table of the document in question.

To identify the user from within the procedure, use the SQL.WEBID variable. When users log
in using their e-mail address, this variable receives the value of the PHONEBOOK.PHONE
column. In procedures that are defined for internal users only, users can also log in with their
username. In such a case, the SQL.WEBID variable receives the value of the USERS.USER
column, multiplied by -1.

Tip: To display report data that is specific to a given customer/vendor/user, make the
appropriate joins in the report to SQL.WEBID.

Example: To obtain a list of the customer’s orders, use the join

WHERE PHONEBOOK.PHONE = SQL.WEBID
AND PHONEBOOK.CUST = ORDERS.CUST

User Identification for Priority Lite/Dashboards PDF last generated: Dec 10, 2024

Priority SDK Page 246

Priority Dashboard Reports

Introduction

Any Priority report can be displayed on the Internet or in Priority Dashboards, provided that
it is run from within an HTML procedure.

Nonetheless, a few forms in the Report Generator enhance its capabilities in two main
directions:

• You can specially design the HTML report, so that it has the “look” of a form.
• You can define input columns and links in the report.

The basic idea of specially designed reports is to be able to place the fields that appear in
the report wherever you want on the HTML page. That is, you select and place the report
fields on the output page (hereafter “form”). To place the fields in the form, you logically
divide the form into table cells, and then place each report field in its respective cell. For a
detailed explanation, see Displaying HTML Text in Reports .

Input Columns and Links in the Report

There are several types of input for a report:

• strings, including hidden character input fields (for password input)
• integers
• real numbers
• Choose lists, including radio buttons, check boxes, Multiple Choose lists and

Multiple Check boxes.

Three types of links can also be defined:

• to a URL (web link)
• internal link back to the current procedure (the procedure will continue to run from

the step where it left off)
• internal link to another procedure (which will be activated by the link).

Input columns and links are defined in the Link/Input tab of the Report Columns–HTML
Design form. Any report column can be made into an input or link column. To choose the
type of input or link, use the Link/Input Type column.

The number of characters that can be recorded in a given input column is determined either
by the width of the report column or by the value of the MAXHTMLWIDTH system constant,
whichever is greater. For example, if the width of the report column is defined as 32 and the
value of the MAXHTMLWIDTH constant is 20, users will only be able to see 20 characters at
a time, but will be able to record up to 32 characters in the column in question. Users can
view any data that exceeds 20 characters by scrolling within the input column.

Defining Choose Lists

When an input column is a Choose list, you have to define the query for retrieving the values

Priority Dashboard Reports PDF last generated: Dec 10, 2024

Priority SDK Page 247

that will appear in that list. You can do so in one of two ways:

• Via a target form: In the Report Columns–HTML Design form, define a target form in
the Target Form (Choose) column.

• Via a query: Create a trigger and record an SQL query for the list in the Field
Triggers form, another sub-level of the Report Columns form.

The Choose query is very similar to a CHOOSE-FIELD form trigger. You retrieve two or three
values, where the first retrieved value is displayed in the Choose list, while the second is
returned to the :HTMLFIELD variable in the procedure. The third value (optional) is used
solely for sorting purposes. (Of course, you can also sort by each of the other two fields.)

Tip: To make the retrieval conditional upon the values of other fields in the same report, use
a variable beginning with # followed by the column number (e.g., :#75 for column 75).

Maintenance of Input and Links

Any HTML page that the user accesses can include a number of reports. Each of these
reports may have a number of input columns and links. When the user clicks on one of the
links, the procedure runs anew (assuming, of course, that the link entails a return to the
procedure). When this happens, the procedure needs to know which link the user has
activated and what values he or she specified in the input columns.

In most cases, the report has the format of a table (columns and rows). In order to identify a
given field, the system needs to know which column and which row are involved, as well as
the value of that field. For this purpose, three variables have been specially created:

• :HTMLACTION – to identify the column (a fixed string)
• :HTMLVALUE – to identify the row (a value returned by one of the report fields other

than the current field)
• :HTMLFIELD – to return the value of the current field (relevant for input columns, but

not for links).

Note: Of course, for a report that displays only one record, it is sufficient to identify the
column (:HTMLACTION).

Example: In the list of parts appearing in the Storefront, each part has at least two
links:
(1) a link from the part description (or its picture), which opens a screen displaying
more detailed information about the part;
(2) a link which adds the item to the shopping cart.

The procedure needs to receive the correct value for the :HTMLACTION variable in order to
know which action to take (e.g., “DETAILS” to display part information or “SHOPPINGCART”
to add the item to the cart). In both cases, the value of :HTMLVALUE will be the same (the
desired part, i.e., PART.PART).

To identify the table column:

• Specify the string which identifies the table column in the Return Value Name
(:HTMLACTION) column of the Report Columns–HTML Design form. This becomes
the :HTMLACTION variable in the procedure (see more below).

To identify the table row:

Priority Dashboard Reports PDF last generated: Dec 10, 2024

Priority SDK Page 248

• Specify the number of the column identifying the table row in the Return Value
Column# (:HTMLVALUE) column. This becomes the :HTMLVALUE variable in the
procedure.
Important! This report column must be either a displayed column or a sort column.

Defining Links in the Report

As explained above, a link in a report can be to a URL or to a procedure (the current one or a
new one). To create a web link (URL):

1. Select W or w in the Link/Input Type column.
2. Indicate the number of the column in which the URL is stored in the Return Value

Column# (:HTMLVALUE) column.

To link back to the same procedure:

1. Select P, p, b, H or N in the Link/Input Type column (depending on the type of
window you want to generate).

2. Indicate the columns that determine the return values (HTMLVALUE and
HTMLACTION).

To create a link to a new procedure:

1. Select P, p, b, H or N in the Link/Input Type column.
2. Indicate the columns that determine the return values (HTMLVALUE and

HTMLACTION).
3. Record the column that defines the procedure in the Internal Link Column # column.

Ensure that the value in this column is the name (ENAME) of the procedure.
Important! This must be a sort column in the report.

4. Return to the Report Columns form and move to the column specified in the
preceding step.

5. Enter the Report Column Extension sub-level form and, in the Expression/Condition
column, record the name of the procedure you want to activate.

To link to multiple procedures:

• Ensure that the column defining the procedure includes the name of the procedure
that needs to be activated for each of the report records (similar to the same
process in a form).

Example:In order to display the financial document by its reference number in the
journal entry, you need to activate one procedure in the case of an invoice, another
procedure in the case of a customer receipt and a third procedure in the case of
payment to a vendor.

Handling Input From Report Columns in the
Procedure

Three variables help to determine input from report columns:

• :HTMLACTION – a fixed string identifying the column
• :HTMLVALUE – a value returned by a report field (other than the current one) that

identifies the row

Priority Dashboard Reports PDF last generated: Dec 10, 2024

Priority SDK Page 249

• :HTMLFIELD – returns the value of the current report field.

When the procedure is run anew (by the Internet user), the :HTMLACTION and
:HTMLVALUE variables contain the values from the field that the user clicked to activate the
link.

To access the values input by the user:

• Create a cursor-like mechanism that passes through all the report’s input columns,
using the DISPLAY command within SQL code. Each time the command is
activated, the values of a different input column are filled in from the report with the
three variables.

Notes:

• If several reports are displayed by the INPUT step, the values of input columns will
be returned for all the reports.

• If you include a Multiple Choose list or Multiple Check box field in the report, each of
the user's selections is stored in a different :HTMLFIELD variable, but only one
:HTMLACTION variable is defined (since all values were selected in a single
column).

Example:

LABEL 1;
DISPLAY;
GOTO 2 WHERE :RETVAL <= 0;
…
LOOP 1;
LABEL 2;

Priority Dashboard Reports PDF last generated: Dec 10, 2024

Priority SDK Page 250

Additional Input Options (Priority
Lite/Dashboards)

Procedures That Work Like Forms (Input Screens)

In addition to procedures that display reports, you can create procedures that enable user
input and have the “look” of a form.

To avoid replication of code (which leads to bugs), load the data into Priority via an interface
to the desired form, using the form load utility.

1. Using GENERALLOAD as your load table, create a linked file of all data.
2. Activate the form load interface.
3. Check that all records in the table were loaded.
4. If they were not, display the error message returned by the load program.

Example:

LINK GENERALLOAD TO :$.LNK;
/* Insert one or more lines into the linked file */
INSERT INTO GENERALLOAD (LINE,RECORDTYPE,…) VALUES(…);
/* Run the interface on the linked file */
EXECUTE INTERFACE ‘MYINTERFACE’, SQL.TMPFILE, ‘-L’, :$.LNK;
/* Insert the message that the interface gave to :PAR1 */
SELECT MESSAGE INTO :PAR1 FROM ERRMSGS
WHERE USER = ATOI(RSTRIND(SQL.CLIENTID,1,9))
AND TYPE = ‘i’ AND LINE = 1;

/* Display the message if any lines were not loaded successfully */
ERRMSG1 WHERE EXISTS (SELECT ‘X’ FROM GENERALLOAD
WHERE LOADED <> ‘Y’ AND LINE > 0);
UNLINK GENERALLOAD;

User Input Validation and Messages

Input Validation

In many cases, there is a need to validate user input, whether of procedure parameters or of
input report columns. To validate user input:

• Add an SQL check (step query) to the INPUT step in the procedure. In the event of
an error (i.e., ERRMSG that does not fail), the procedure will display the same
HTML page as before, together with the appropriate error message.

Resetting Variables and/or Generating the Reports Again

Sometimes, before the page is re-displayed, you may want to send the procedure back to a
step prior to INPUT, so as to reset variables or to generate the same reports anew. To go

Additional Input Options (Priority Lite/Dashboards) PDF last generated: Dec 10, 2024

Priority SDK Page 251

back to an earlier step:

• Assign an appropriate value, in the INPUT step in question, to the :HTMLGOTO
variable before the code for the error messages.

Note: If no error messages are generated, the procedure ignores the :HTMLGOTO variable
and continues with the step that follows INPUT.

Another Way to Display Messages

To display any type of message (including error messages) on the HTML page:

1. Add a MESSAGE step to the procedure, prior to the INPUT step.
2. Record the message number as the value of its (single) parameter.

Adding Explanatory Text

In many procedures, especially those requiring user input, it is helpful to add brief text that
guides the user through the actions he or she has to perform. While this text can be written
on the base page itself, it is more efficient to record it as set text directly in Priority. For this
purpose, a standard report called HTMLTEXT has been created.

To include set text in the procedure:

• Add a REPORT step for HTMLTEXT to the procedure (before the INPUT step). Use
a single parameter: OUTPUT (as in any other report).

To record the set text itself:

1. Enter the Set Text for Internet Screens form (System Management → System
Maintenance → Internet Definitions). This form displays all Internet procedures, with
a line for each REPORT step that runs HTMLTEXT.

2. Move to the proper line (find the right procedure title and step number).
3. In the Set Text sub-level form, write the explanatory text that will appear on the

HTML page.

Input of Text

To enable the user to input text in the HTML screen, use a procedure parameter of TEXT
type. The user keys in an unlimited number of lines in the text field, and these lines are
returned to the procedure via a file linked to the PROCTABLETEXT table. For an example,
see Inputting Text Into an HTML Screen.

Input of Attachments

The input of attachment files is another special type of procedure input. Use a CHAR
parameter and specify Y in the Browse Button column of the Procedure Parameter Extension
form.

Additional Input Options (Priority Lite/Dashboards) PDF last generated: Dec 10, 2024

Priority SDK Page 252

In the HTML screen, the user records the attachment filename. After he or she clicks Go, the
procedure automatically copies this file to the server in the system\mail directory and records
the new filename in the procedure parameter. That is, after the INPUT step, the value in the
attachment parameter will not be the filename that the user keyed in, but rather the filename
in the server.

Additional Input Options (Priority Lite/Dashboards) PDF last generated: Dec 10, 2024

Priority SDK Page 253

Defining a Base Page for HTML
Pages (Priority Lite/Dashboards)

Defining the Base Page

As HTML pages are generated by each INPUT step in the procedure, you have to construct
a separate base page for each INPUT step. To create base pages automatically:

• Run the Create HTML Pg for Step program, which is an Action from the Procedure
Steps form, sub-level of the Procedure Generator.

The resultant base page will be in ASCII format and can be found in the system\html
directory of the Priority server. Its name is the procedure name followed by the step number.

Example: If you run the program for the MYPROG procedure at step 50, you will create a
page called MYPROG-50.htm.

It is advisable to include as little text as possible in base pages, in order to facilitate
localization to different languages (not including bi-directional languages such as Hebrew
and Arabic) using the same base page.

To this end, it is possible to automatically insert a document's header as the title of the HTML
page, using the following syntax:

<TITLE><!--| Priority Title |--></TITLE>

Similarly, you can insert procedure messages directly into the base page when the document
is produced.

Example: To insert message 5 of the WWWDOCUMENTS_Q procedure in a base page,
add the following HTML tag:
<!--| Priority Message (WWWDOCUMENTS_Q 5) |-->

Important! Whenever you add a new report or input parameter to a given INPUT step, you
must re-create the base page (i.e., run the program again).

Note: If you are working in Hebrew, the program will prepare the base page in both Hebrew
(right-to-left) and English (left-to-right), where the former is stored in the system\html
directory and the latter is stored in the system\html\lang3 directory.

Revising the Base Page

Once the base page has been created, you can revise it using any standard editor for HTML
page design. You can add pictures, links and text, and you can change the order and
position of the reports, parameters and messages that are input into the template.

Defining a Base Page for HTML Pages (Priority Lite/Dashboards) PDF last generated: Dec 10, 2024

Priority SDK Page 254

Dashboard Procedures

Introduction

The procedures used to display Priority Dashboards in Priority and on Outlook (Priority on
Outlook) are very similar to other HTML procedures. Dashboard procedures, however, are
assigned a different value in the Rep/Wizard/Dashboard column of the Procedure Generator:

There are three types of Dashboard procedures:

• "Basic Dashboards" display live data in a single window without any internal
procedures (e.g., WWWCUSTINFO). This type of procedure is almost identical to a
regular Priority Lite procedure. However, in the Rep/Wizard/Dashboard column of
the Procedure Generator, make sure to assign the value D, indicating that this is a
Dashboard procedure.

• "Multi-part Dashboards" consist of a number of smaller Internet procedures, or web
parts, arranged within a main window (e.g., WWWDB_SERVICEMNGR). When
creating internal procedures for this type of Dashboard, assign them the value d in
the Rep/Wizard/Dashboard column of the Procedure Generator.

• Like basic dashboards, "Portlets" display live data in a single window without any
internal procedures, but on the home page (in the web interface). In the Rep/Wizard/
Dashboard column of the Procedure Generator, assign them the value p.

Creating a New Multi-Part Dashboard

1. Create a copy of an existing procedure (e.g., WWWDB_SERVICEMNGR).
2. Revise any HTML pages (stored in the system\html directory) in your new procedure

as follows:
Locate the line:
onload= <javascript:DashboardLoad(WWWDB_SERVICEMNGR)> and replace
the procedure name (WWWDB_SERVICEMNGR) with the name of the new
procedure (e.g., PRIV_NEWDASHBOARD).

3. Customize the new procedure (PRIV_NEWDASHBOARD) as desired, and attach
the desired internal procedures (i.e., procedures with the Rep/Wizard/Dashboard
value d).
Note: See Rules for Customizing.

Adding a Dashboard Procedure to Outlook

Once you have finished preparing the new Dashboard procedure, you can add it to Outlook
from the Mail menu in Priority (Mail → Mail Options → Outlook → Priority on Outlook).
Priority Dashboards appear in Outlook under the heading Priority Dashboards (in the
Shortcuts pane).

CRM Dashboards

A CRM Dashboard is a special type of basic Dashboard procedure, which displays a report
of live CRM data. This type of Dashboard procedure is created in much the same way as a

Dashboard Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 255

basic Dashboard procedure, and should be assigned the value CRM in the Application
column of the Procedure Generator. CRM Dashboards that are added to Outlook appear
under the heading Priority CRM.

Dashboard Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 256

Create BPM
This section explains how to create a BPM status system for a new document. Assuming the
new document is called XXXX_MYDOC, the following explains how to:

• Create a form called XXXX_MYDOCSTATS (and its accompanying table).
• Modify the XXXX_MYDOC form to support statuses.
• Create a procedure for the BPM flow chart (and accompanying interfaces).

Notes:

• BPM flow charts cannot be created for standard forms.
• A BPM flow chart can only be created for an upper-level form.
• All the names and descriptions of forms, tables, columns, etc. are given here for

demonstration purposes and can be changed as desired.
• For the purposes of this procedure, the first two keys of the base table of the

XXXX_MYDOC form should be:
1. An autounique key
2. A unique key, comprising a single column of CHAR or INT type.

The steps to take (in order) are as follows:

1. Create the statuses table
2. Create the statuses form
3. Modify the new document
4. Enable tracking of documents (optional)
5. Update the STATUSTYPES table
6. Create the necessary interfaces
7. Create the procedure for the BPM chart
8. Debug the BPM
9. Insert the initial status into the status table

Create BPM PDF last generated: Dec 10, 2024

Priority SDK Page 257

Create BPM Statuses Table
The first step in creating a BPM flow chart is to create the statuses table.

1. Use the CreateTable procedure to create a new table with the following attributes:
Table Name – XXXX_MYDOCSTATS
Table Type – 0 (small table)

2. Define the table’s three basic columns:
MYDOCSTAT – INT, 13, Status (ID)
STATDES – CHAR, 12, Status
SORT – INT, 3, Display Order

3. Add a mandatory flag with the following attributes:
INITSTATFLAG – CHAR, 1, Initial Status.

4. Add additional flags as you wish (see examples in the standard status forms).
Note: You do not need to add the flags Include in ToDo List or Inactive Status, or
provide a column for a status description in English (for non-English environments).
These columns already exist in the DOCSTATUSEStable, which will be joined to the
XXXX_MYDOCSTATS form.

5. Define the following columns as keys:
AutoUnique – MYDOCSTAT
Unique – STATDES

Note: All the names and descriptions of forms, tables, columns, etc. are given here for
demonstration purposes and can be changed as desired.

The next step is to create the statuses form.

Create BPM Statuses Table PDF last generated: Dec 10, 2024

Priority SDK Page 258

Create BPM Statuses Form
The second step in creating a BPM flow chart is to create the statuses form.

1. Use the Form Generator to create a new form named XXXX_MYDOCSTATS, based
on the XXXX_MYDOCSTATS table.

2. Define the following outer joins (add a question mark in the Join ID column next to
the Join Table column): XXXX_MYDOCSTATS.MYDOCSTAT =
DOCSTATUSES.ORIGSTATUSID,

DOCSTATUSES.COLOR = HTMLCOLORS.COLOR

3. Define the following form columns:
XXXX_MYDOCSTATS.STATDES – Status XXXX_MYDOCSTATS.INITSTATSFLAG
– Initial Status

4. Add all of the flags from the XXXX_MYDOCSTATS table.
5. Add the following flags from the DOCSTATUSES table:

◦ DOCOPENED – Include in ToDo List\
◦ INACTIVE – Inactive Status\
◦ ESTATDES (optional for non-English system) – Adds a description in

English.
Note: When recording these columns, do not fill in the Column Name or
Table Name columns; rather, enter the Form Column Extension sub-level
form and enter the table and column names in the Expression/Condition
column (i.e., DOCSTATUSES.DOCOPENED).

6. Add the following hidden columns (listed are the Form Column Name, Table Name
and Column Name, respectively):
DOCSTATUS, DOCSTATUSES, DOCSTATUS
SORT, MYDOCSTATUSES, SORT
STATUSTYPE, DOCSTATUSES, TYPE
VCOLORNAME, HTMLCOLORS, COLORNAME
Note: The STATUSTYPE column must have an expression 'PRIV_MYBPM', where
'PRIV_MYBPM' is a name for the new BPM system. This name must begin with a
four-letter prefix, similar to what you use throughout the system for this customer,
and can include up to 10 characters.

7. Move to the line for the STATDES column and specify 1 in the Sort Priority column.

Note: All the names and descriptions of forms, tables, columns, etc. are given here for
demonstration purposes and can be changed as desired.

Form Triggers

The following form triggers need to be created:

• A CHECK-FIELD trigger in the INITSTATFLAG column that prevents users from
marking more than one status as an initial status:

ERRMSG 1 WHERE :$.@ = 'Y' AND EXISTS

Create BPM Statuses Form PDF last generated: Dec 10, 2024

Priority SDK Page 259

(SELECT 'X' FROM XXXX_MYDOCSTATS
WHERE INITSTATFLAG = 'Y' AND MYDOCSTAT <> :$.MYDOCSTAT);

• A PRE-INSERT/PRE-UPDATE trigger that checks the validity of the record. For
example, the following checks that the initial status allows document revision:

ERRMSG 2 WHERE :$.INITSTATFLAG = 'Y' AND :$.CHANGEFLAG <> 'Y';

• A POST-INSERT/POST-UPDATE trigger that handles record insertion into
DOCSTATUSES:

INSERT INTO DOCSTATUSES(TYPE,ORIGSTATUSID)
VALUES(:$.STATUSTYPE, :$.MYDOCSTAT);
UPDATE DOCSTATUSES SET STATDES = :$.STATDES,
ESTATDES = :$.ESTATDES /* only in non-English system */,
SORT = :$.SORT, COLOR = :$.VCOLOR, INACTIVE = :$.INACTIVE,
DOCOPENED = :$.DOCOPENED
WHERE TYPE = :$.STATUSTYPE AND ORIGSTATUSID = :$.MYDOCSTAT;

: Note: If you don't support a non-English environment, don't update the ESTATDES column.

• A POST-DELETE trigger, that deletes from DOCSTATUSES:

DELETE FROM DOCSTATUSES WHERE TYPE = :$.STATUSTYPE
AND ORIGSTATUSID = :$.MYDOCSTAT;

• A PRE-FORM trigger that causes all records to be displayed when the form is
entered. It should contain the following text:

:statustype = 'PRIV_MYBPM'; /* where 'PRIV_MYBPM' = STATUSTYPE */
:KEYSTROKES = '*{Exit}';

• A POST-FORM trigger with additional checks (e.g., that a status was marked as
initial status):

ERRMSG 4 WHERE NOT EXISTS

(SELECT 'X' FROM XXXX_MYDOCSTATS WHERE INITSTATFLAG = 'Y');

• A PRE-INS-UPD-DEL trigger (or an error message in the PRE-INSERT, PRE-
UPDATE and PRE-DELETE triggers) that prevents any manual changes in this
form, since all the changes will be made using an interface run by the BPM Chart:

ERRMSG 17 WHERE :FORM_INTERFACE <> 1;

• A CHOOSE-FIELD trigger that displays the statuses from the DOCSTATUSES
table:

SELECT STATDES, '', ITOA(SORT,3)
FROM DOCSTATUSES
WHERE TYPE = 'PRIV_MYBPM'
AND
#INCLUDE STATUSARCS/EXP1

The next step is to modify the new document.

Create BPM Statuses Form PDF last generated: Dec 10, 2024

Priority SDK Page 260

Modify the New Document
The third step in creating a BPM flow chart is to modify the new document.

Assigned to

Add an Assigned to column to the new document (XXXX_MYDOC). Consequently, when a
user changes the status of the document to a status flagged Include in ToDo List, a new
record will be opened in the To Do List form for that user.

1. Use the Column Generator to add a new column to the MYDOC table: OWNER –
INT, 13, Owner (ID).

2. Add a column to the MYDOC form called OWNER, with a join to the USERS table:
MYDOC.OWNER = USERS.USER

3. Add a third column with the following Form Column Name, Table Name and Column
Name: OWNERLOGIN, USERS, USERLOGIN. Assign the revised title Assigned to.
This column should be mandatory (Type M); it is filled automatically by the BPM
when a status is changed.

4. Add the following messages to the XXXX_MYDOC form (you can use the same
numbered messages for standard forms such as ORDERS as inspiration):

◦ Message 400: This message will be used to alert users of a change in the
status of a document (when the document is in their tracking list).

◦ Message 401: This message will be used when BPM rules are set to send
an alert when a document remains in a certain status for a certain amount
of time.

◦ Message 402: This message should consist of a brief description of the
document (e.g., Price Quote, Blanket Sales Order), which will appear as the
Document Type in the To Do List form.

The Status Column

1. Add another column to the MYDOC table: MYDOCSTAT, type INT, width 13, title
Status (ID). This column must have the same name as the column of the autounique
key in the XXXX_MYDOCSTATS table.

2. Add the following columns to the XXXX_MYDOC form:

◦ MYDOCSTAT (joined): XXXX_MYDOC.MYDOCSTAT =
XXXX_MYDOCSTATS.MYDOCSTAT

◦ STATDES (mandatory, not joined): XXXX_MYDOCSTATS.STATDES
◦ STATUSTYPE (calculated, Type CHAR, Width 20): Assign column

expression 'PRIV_MYBPM', where 'PRIV_MYBPM' is the STATUSTYPE.
3. Add a POST-FIELD trigger to the STATDES column:

:$.STATUSTYPE = 'PRIV_MYBPM'; {where 'PRIV_MYBPM' = STATUSTYPE}

4. Add a POST-FIELD trigger to one of the columns that will fill in the initial status. For
example, if you have a MYDOCNAME column in XXXX_MYDOC, add the following
POST-FIELD to that column:

Modify the New Document PDF last generated: Dec 10, 2024

Priority SDK Page 261

SELECT MYDOCSTAT INTO :$.MYDOCSTAT
FROM XXXX_MYDOCSTATS
WHERE INITSTATFLAG = 'Y'
AND :$.MYDOC = 0;

5. Add POST-INSERT and POST-UPDATE triggers with the text:

GOTO 51 WHERE :$.MYDOCSTAT =:$1.MYDOCSTAT
:doc = :$.MYDOC;
:status = :$.MYDOCSTAT;
:statustype = 'PRIV_MYBPM';
#INCLUDE STATUSAUTOMAIL/SendStatusMail
LABEL 51;

Note: MYDOC should be the Form Column Name of the autounique key of the
XXXX_MYDOC table.

6. If you have an Allow Revisions flag for the status, add the
XXXX_MYDOCSTATS.CHANGEFLAG column to the form, as well as PRE-
INSERT, PRE-UPDATE and PRE-DELETE triggers that print an error if the status
doesn't allow changes.

Connecting the New Document to the To Do List

1. Add the following hidden column to XXXX_MYDOC(listed are the Form Column
Name, Table Name and Column Name, respectively): NSCUST, MYDOC, MYDOC.
This column contains the autounique key of the XXXX_MYDOC table (the same as
the MYDOC column).

2. Add POST-FIELD triggers, in both the MYDOC and NSCUST columns, to copy the
values from one column to the other. For example, in the MYDOC column, the
trigger would be:

:$.NSCUST = :$.@;

3. If two or more forms share the same base table (e.g., both the CUSTNOTES and
CUSTNOTESA forms are based on the CUSTNOTES table), add the following
hidden column to those forms that do not appear in the DOCEXEC column of the
STATUSTYPES table: STATMAILSTATUSTYPE (Type CHAR, Width 1). Assign the
column expression PRIV_MYBPM, where PRIV_MYBPM is the STATUSTYPE.

4. Link the DOCTODOLISTLOG and DOCTODOLIST forms as sub-levels of the
XXXX_MYDOC form.

5. Run the following query to enable activation of the XXXX_MYDOC form from the To
Do List:

INSERT INTO ZOOMCOLUMNS(NAME, TONAME, POS)
VALUES('TODOREF', 'MYDOCNAME', X);
/* where X = some number */

6. Every change in the status or user assigned to your document is documented in the
TODOLIST table. You should also decide whether users will be able to delete
records from the document. For example, you cannot delete records in the
ORDERS form, you can only change their status to one which is flagged as

Modify the New Document PDF last generated: Dec 10, 2024

Priority SDK Page 262

Canceled. If you decide to allow record deletion in your document, you must ensure
that any deleted records are deleted from the TODOLIST table as well. To do so,
add a POST-DELETE trigger to the XXXX_MYDOC form:

DELETE FROM TODOLIST WHERE TYPE = 'PRIV_MYBPM' AND IV = :$.MYDOC;

The next step is to update the STATUSTYPES table. Optionally, you can enable document
tracking for this form.

Modify the New Document PDF last generated: Dec 10, 2024

Priority SDK Page 263

Enable Document Tracking
If you want to allow users to add documents from this form to their Tracking List, add the
following hidden columns to the MYDOC form (listed are the Form Column Name, Table
Name and Column Name, respectively):

Notes:

• As these columns are the same in any document that allows tracking, you
can use existing standard forms as a guideline (e.g. ORDERS).

• Document tracking is required if you want your documents to show up in
Priority Talk (in the web interface). To enable Priority Talk comments, it
must also have an Internal Dialog sublevel.

1. FOLLOWUPIV, MYDOC, MYDOC. This column contains the autounique key of the
XXXX_MYDOC table (the same as the MYDOC column). Add an outer join to the
FOLLOWUPLIST table (Join Column IV, Join Table FOLLOWUPLIST, Join ID ?
(outer join)).

2. FOLLOWUPTYPE, TYPE, FOLLOWUPLIST. In Form Column Extension, specify
the Column Type CHAR.

3. FOLLOWUPUSER, USER, FOLLOWUPLIST. In Form Column Extension, specify
the Expression/Condition SQL.USER.

The next step is to update the STATUSTYPES table.

Enable Document Tracking PDF last generated: Dec 10, 2024

Priority SDK Page 264

Update the STATUSTYPES Table
The fourth step in creating a BPM flow chart is to update the STATUSTYPES table.

The STATUSTYPES table is used by the BPM mechanism to recognize the forms and
columns involved in the workflow process. It is therefore necessary to find certain values and
insert them in this table.

Finding the Values

The following values must be determined:

• DOCEXEC – The EXEC value of the MYDOC form.

SELECT EXEC FROM EXEC WHERE ENAME = \'MYDOC\'
AND TYPE = 'F' FORMAT;

• STATEXEC – The EXEC value of the MYDOCSTATS form.

SELECT EXEC FROM EXEC WHERE ENAME = 'XXXX_MYDOCSTATS'
AND TYPE = 'F' FORMAT;

• PROCEXEC - The EXEC value of the procedure used for printing the
XXXX_MYDOC document. This printout can be attached to a mail message sent by
the BPM. The following query assumes this procedure is called
XXXX_WWWSHOWMYDOC:

SELECT EXEC FROM EXEC WHERE ENAME = 'XXXX_WWWSHOWMYDOC'
AND TYPE = 'P' FORMAT;

• STATCNAME – The name of the column in the XXXX_MYDOC form that holds the
autounique key of the XXXX_MYDOCSTATS table, i.e., MYDOCSTAT.
For example,

• DOCCNAME – The name of the column in the XXXX_MYDOC form that holds the
autounique key of the XXXX_MYDOC table, i.e., MYDOC.

• DOCNOCNAME – The name of the column in the XXXX_MYDOC form that
contains the number of the document. This is usually the Unique key of the
XXXX_MYDOC table (e.g., MYDOCNAME).
Tip: In the standard Sales Orders form, it's the ORDNAME column; in the standard
Shipment Document form, it's the DOCNO column.

• OWNERCNAME – The name of the column in the XXXX_MYDOC form that holds
the Assigned to login, i.e., OWNERLOGIN.

• INITSTATCNAME – The INITSTATFLAG column in the XXXX_MYDOCSTATS
form.

• DOCDATENAME – The name of the column in the XXXX_MYDOC form that holds
the date the document was recorded (e.g., CURDATE).

Update the STATUSTYPES Table PDF last generated: Dec 10, 2024

Priority SDK Page 265

• TEXTEXEC – If the XXXX_MYDOC document has a sub-level text form (e.g., the
ORDERSTEXT sub-level of the ORDERS form), the EXEC value of this text form.

The following query assumes this form is called XXXX_MYDOCTEXT:

SELECT EXEC FROM EXEC WHERE ENAME = 'XXXX_MYDOCTEXT'
AND TYPE = 'F' FORMAT;

• TEXT2EXEC – If the XXXX_MYDOC document has an additional sub-level text
form (e.g., for text in a second language), the EXEC value of the second sub-level
text form.

The following query assumes this form is called XXXX_MYDOCTEXT2:

SELECT EXEC FROM EXEC WHERE ENAME = 'XXXX_MYDOCTEXT2'
AND TYPE = \'F\' FORMAT;

• LOGEXEC - The EXEC of the DOCTODOLISTLOG form that was linked to
XXXX_MYDOC as a sub level form.

SELECT EXEC FROM EXEC WHERE ENAME =
\'DOCTODOLISTLOG\'

: AND TYPE = \'F\';

Inserting the Data

Run the following query in order to insert the above data into the STATUSTYPES table:

INSERT INTO STATUSTYPES (TYPE, DOCEXEC, STATEXEC, PROCEXEC,
STATCNAME, DOCCNAME, DOCNOCNAME, OWNERCNAME, INITSTATCNAME,
DOCDATENAME, TEXTEXEC, TEXT2EXEC, LOGEXEC)
VALUES('PRIV_MYBPM', DOCEXEC, STATEXEC, PROCEXEC, 'MYDOCSTAT',
'MYDOC', 'MYDOCNAME', 'OWNERLOGIN', 'INITSTATFLAG',
'DOCDATENAME', TEXTEXEC, TEXT2EXEC, LOGEXEC);

where

• 'PRIV_MYBPM' is the STATUSTYPE,
• DOCEXEC, STATEXEC, PROCEXEC, TEXTEXEC, TEXT2EXEC are the numeric

values from the above queries.

Search

Priority's Search tool is used to perform a full text search for documents and attached files
in the system. This search mechanism is able to search for specific text in all documents that
have a BPM status system (including custom documents), provided these documents are set
up as follows:

• In the DOCDATENAME column of the STATUSTYPES table, specify which column
in the document is the date (used to specify a date range for searches; e.g., the
CURDATE column of the ORDERS form).

The next step is to create the necessary interfaces.

Update the STATUSTYPES Table PDF last generated: Dec 10, 2024

Priority SDK Page 266

Add BPM Interfaces
The fifth step in creating a BPM flow chart is to create the necessary interfaces.

BPM Interface

Create a form interface to the XXXX_MYDOCSTATS form. Changes in the BPM chart will
update the form using this interface.

1. Open the Form Load Designer.
2. In the Load Name column, write the name of the interface: “BPMPRIV_MYBPM”,

where “PRIV_MYBPM” is the name of the STATUSTYPE.
3. In the Load Table column, write “GENERALLOAD”.
4. In the Record Size column, specify “500” (this should be large enough).
5. Enter the Forms to be Downloaded sub-level form.
6. In the Form Name column, write “XXXX_MYDOCSTATS”.
7. In the Code (Record Type) column, write “1”.

Note: You don’t need to fill in the Link Form Cols to Load Tbl Cols form (a sub-level of the
Forms to be Downloaded form), as this form will be filled in automatically when you run the
BPM procedure.

Update Status/Assigned User

The STATUSMAIL interface is used by the BPM to change the status and assigned user of
the XXXX_MYDOC form.

1. In the Form Load Designer, write the name of the interface in the Load Name
column: “STATUSMAILPRIV_MYBPM”, where “PRIV_MYBPM” is the name of the
STATUSTYPE.

2. In the Load Table column, write “GENERALLOAD”.
3. In the Record Size column, specify “500” and flag the Ignore Warnings column.
4. Enter the Forms to be Downloaded sub-level form.
5. In the Form Name column, write “XXXX_MYDOC”.
6. In the Code (Record Type) column, write “1”.

7. Enter the Link Form Cols to Load Tbl Cols sub-level form, and create three records,
indicating the following Load Table Column, Form Column Name and Order,
respectively:

INT1, MYDOC, 1

TEXT1, OWNERLOGIN, 2

TEXT2, STATDES, 3

where:

Add BPM Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 267

◦ MYDOC is the Form Column Name of the column in the XXXX_MYDOC
form that contains the autounique key of the XXXX_MYDOC table.

◦ OWNERLOGIN is the Assigned to column in the XXXX_MYDOC form.
◦ STATDES is the Form Column Name of the column in the XXXX_MYDOC

form that contains the status description.

The next step is to create the procedure for the BPM chart.

Add BPM Interfaces PDF last generated: Dec 10, 2024

Priority SDK Page 268

Add BPM Chart Procedure
The sixth step in creating a BPM flow chart is to create a procedure called
XXXX_VISMYDOCSTATS in the Procedure Generator.

The procedure steps should be as follows:

• Step 5

◦ Entity Name: SQLI
◦ Type: C
◦ Step Query (in the sub-level form): #INCLUDE WEBCONST/NotFromJava

• Step 10

◦ Entity Name: BPM
◦ Type: C

◦ Procedure Parameters (in the sub-level form):

▪ Parameter Name: CHR
▪ Pos: 10
▪ Width: 20
▪ Value: PRIV_MYBPM (STATUSTYPE)
▪ Type: CHAR

• Step 90
◦ Entity Name: END
◦ Type: B

• Step 91
◦ Entity Name: XXXX_MYDOCSTATS (Status form)
◦ Type: F

Note: The names of entities are given here for demonstration purposes and can be changed
as desired.

The next step is to debug the BPM chart.

Add BPM Chart Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 269

Debug the BPM
The seventh step in creating a BPM flow chart is to run it in debug mode in the Windows
interface. To do so, use the following command:

BPM StatusType` ‘-g’ ‘debugfile’

Example: To debug the BPM Flow Chart – Sales Orders (in Windows): BPM O -g
..\..\bpm_O.dbg

The last step is to insert the initial status into the status table.

Debug the BPM PDF last generated: Dec 10, 2024

Priority SDK Page 270

Insert Initial BPM Status
The final step in creating a BPM flow chart is to write a query that will insert the initial status
into the XXXX_MYDOCSTATS table:

:INITSTAT = 'Initial Stat';
:STATUSTYPE = 'PRIV_MYBPM'
INSERT INTO XXXX_MYDOCSTATS
(MYDOCSTAT,STATDES,INITSTATFLAG,CHANGEFLAG)
VALUES(-1,:INITSTAT,'Y','Y');

INSERT INTO DOCSTATUSES (ORIGSTATUSID,TYPE,STATDES, NEWDOCFLAG)
VALUES(-1, :STATUSTYPE, :INITSTAT,'Y');

Insert Initial BPM Status PDF last generated: Dec 10, 2024

Priority SDK Page 271

Creating Charts

Introduction

This section explains how to create and define charts, which provide a graphic display of
scheduled tasks, using the GANTT program. These charts consist of four principal elements:

• Time range
• Employees/resources
• Tasks (any kind of operation (e.g., work order) that can be displayed in a chart)
• Task dependencies (applicable only in an manufacturing setting)

The GANTT program supports three kinds of charts:

• Gantt: The X-axis is a variable timeline; the Y-axis consists of employees/resources.
• Calendar: The X-axis is a 24-hour timeline; the Y-axis consists of a main scale

displaying days and a sub-scale displaying employees/resources.
• Group Schedule: The X-axis is a 24-hour timeline; the Y-axis consists of a main

scale displaying employees/resources and a sub-scale displaying days.

The user can perform the following operations in a chart:

• Add new tasks
• Update/delete existing tasks
• View task details
• View employee details
• Toggle between chart types (Gantt/Calendar/Group Schedule)
• Vary the timeline
• Access the task in Priority
• Access the employee record in Priority

Defining a New Chart

To create a new chart, you need to define a procedure that activates the GANTT program.
You must also define an interface to the appropriate form, to be driven by the GANTT
program when updating or adding fields.

A procedure for building charts consists of two distinct sections:

Section 1: Begins with INPUT and/or SQLI steps and ends with the activation of the GANTT
program.

Section 2: Query steps for data retrieval.

These two sections are separated by an END step.

Section 1: User Input and Activation of the GANTT Program

As in other procedures, this section requires user input, to determine which resources to
display and during what time period. When run as an Action, there is no need for an INPUT

Creating Charts PDF last generated: Dec 10, 2024

Priority SDK Page 272

step, but you do need to initialize the necessary parameters (e.g., display mode, time range)
in an SQLI step.

Whether you run the GANTT procedure as an Action or from the menu, you must define a
parameter of FILE type, indicating a linked file of records. This parameter is used to execute
a link to the table on which the procedure will run. All queries executed by the GANTT
program, in which data is retrieved from that table, are executed against the linked table (this
is similar to passing a linked table to a report).

When the procedure is run as an Action, you can define a specific task as “selected”, by
passing the task identifier in question to the GANTT program. In such a case, the chart
opens with the specified task displayed. It is recommended to define a distinct and vivid
display color for this task.

The following parameters must be defined for the GANTT program, in the following order:

1. The current procedure name (in order to retrieve queries from the second section).
2. From Date: The date from which chart data should be displayed.
3. To Date: The date until which chart data should be displayed
4. LINK file: Usually the employee/resource table from the procedure’s INPUT step.

You can also execute calculations before running the GANTT program, and link the
table containing the calculation results.
Note: If you indicate the USERGANTT table, the procedure does not execute a
LINK to the table, but rather uses the original table.

5. The name of the linked table.
6. The name of the interface that updates/adds tasks.
7. The name of the form which the user can access for task details.
8. The name of the form which the user can access for employee details.
9. The flag permitting/preventing revisions to the chart (0/1).

10. The flag permitting/preventing additions to the chart (0/1).
11. The default display option (1 = Gantt, 2 = Calendar, 3 = Group Schedule, 0 = the

last display viewed by the current user, 4 = either the Calendar or Group Schedule
display, whichever was last viewed by the current user).

12. Identifier of the selected task.
13. Identifier of the employee/resource assigned to the selected task.
14. Record null parameter for this position.
15. Record null parameter for this position.
16. Record null parameter for this position.

17. Record null parameter for this position.

18. An additional identifier, whose value appears in the variable OTHERID.
19. A second additional identifier, whose value appears in the variable OTHERID2.
20. The chart title.
21. The flag determining whether the chart is multi-company (0 = No, 1 = Yes).

Section 2: Defining Parameters

The following is the list of parameters to be defined in the second section of the procedure
(all steps are Type C; their order is not important).

Name of the Step Returns
RESOURCE The list of employees to display
RESOURCE_DETAILS The details of a specific employee

Creating Charts PDF last generated: Dec 10, 2024

Priority SDK Page 273

Name of the Step Returns
TASKS The list of tasks to display
TASK_DETAILS The details of a specific task
TASK_TEXT The text of a specific text
TASK_INSERT Opening/updating a task via a form
TASK_EDIT Query to define input fields in the dialogue box
TASK_REFRESH Updated display of task details

TASK_CUSTOMDATE
Adds a custom date label to the chart View
Definitions (Windows

interface
only)

WORKHOURS Office hours for each day of the week
DAYSOFF Non-working days

RESOURCE_WORKHOURS
Work hours per employee (instead of the previous
two steps)

RELATIONS
Task dependencies (applicable only in an
manufacturing setting)

RESOURCE_CHOOSE Employee Choose list
RESOURCE_CHOOSE2 Additional Choose list (2)
RESOURCE_CHOOSE3 Additional Choose list (3)
RESOURCE_UPDATE Update after choosing an employee
RESOURCE_UPDATE2 Update after additional Choose list (2)
RESOURCE_UPDATE3 Update after additional Choose list (3)
TASK_PRINT Preparation of a LINK file before producing reports

Note: Click here for a detailed explanation of each step.

Procedure Messages

You can dynamically define procedure messages to serve as field titles for retrieved task or
employee details. Such messages should be assigned numbers greater than 20.

Messages 1 through 20 are already used by the GANTT program for various display titles.
Consequently, when defining a new procedure you should always start by filling in the first
twenty messages. The following table explains how these messages are used:

No. Explanation Example
1 Chart name Calendar
2 Chart title Calendar
3 Title while initializing employees Loading employees…
4 Title while initializing tasks Loading tasks…
5 Title while initializing dependencies Loading dependencies…
6 Title for adding a task New Appointment
7 Title for updating a task Update Appointment
8 Title for the subject field when updating/adding a task Subject
9 Title for employees/resources Employees
10 Error message when adding a new task Do not add a task
11 Error message when updating a task Do not update a task
12 Error message when deleting a task Do not delete a task
13 Title for the Resource Search dialogue box Search for Employee / Date
14 Title for the Resource Search field Employee

Creating Charts PDF last generated: Dec 10, 2024

Priority SDK Page 274

No. Explanation Example
15 Title for the employee Choose list Employees
16 Title for additional Choose list (2) Groups*
17 Title for additional Choose list (3) Team leaders*
18 Title for activating the employee Choose list Choose an employee
19 Title for activating additional Choose list (2) Choose a group*
20 Title for activating additional Choose list (3) Choose a team leader*

* Different lists may be defined, at the discretion of the programmer. For example, in charts
used to schedule technicians, you can allow users to retrieve records by service call type,
rather than by team leader name.

Defining the Interface for Updating/Adding Tasks

The interface is defined against the GENERALLOAD table. Define an interface for any form
against this table, and record the name of the interface as an argument in the call to the
GANTT program. The interface will always run when the table contains a single record
whose code is 1 (in the Form Load Designer).

The values for adding/updating a task appear in the table in the following fields:

Field Value
INT1 Task identifier
INT2 Employee/resource identifier
INT3 From hour
INT4 To hour
INT5 Previous employee/resource identifier (before update)
DATE1 From date (DATE 8)
DATE2 To date (DATE 8)
DATE3 From date/hour (DATE 14)
DATE4 To date/hour (DATE 14)

Notes:

• You can use either separate fields for date and time, or a single field for both.
• When the user adds a new task to the chart, the interface runs with task identifier 0.
• In addition to the constant fields, which appear in the above chart, values are

transferred to additional fields, as defined in the TASK_EDIT step.

Creating Charts PDF last generated: Dec 10, 2024

Priority SDK Page 275

Parameters for Charts

Introduction

The following explains in detail the various parameters that can be used to create charts.
Refer to the table in Section 2 of Defining a New Chart.

Defining Employees (RESOURCE)

Fields to retrieve: employee identifier, employee name, target value, a sorting column

Query variables: FROMDATE, TODATE.

Notes:

• Always retrieve values for all four fields.
• You may choose not to use the variables to define your query conditions.
• You may choose not to use the sorting column (in which case you retrieve a null

value); its purpose is to allow you to sort records by something other than the
employee name.

Example:

SELECT USER,USERNAME,USERLOGIN,1 FROM USERS
WHERE USER>0
ORDER BY USERLOGIN;

Retrieving Details of a Specific Employee
(RESOURCE_DETAILS)

Fields to retrieve: Any desired employee details from the USERS or USERSB form.

Query variables (required): RESOURCEID.

Note: You can dynamically define procedure messages to serve as field titles for the
returned values by using the # symbol for each field, followed by a message number.

Example:

SELECT USERLOGIN,SNAME,EMAIL,ADDRESS,SQL.DATES AS ‘#20’
FROM USERS,USERSB
WHERE USERS.USER = :RESOURCEID
AND USERS.USER = USERSB.USER;

Defining Tasks (TASKS)

Fields to retrieve: task identifier, employee identifier, task description, from date/time, to

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 276

date/time, target value, display color

Query variables

• Required: FROMDATE, TODATE
• Optional: SELECTEDID

Notes:

Retrieve values for all of the above fields.
The date field must also include the time (DATE 14).
The display color is a value from the COLORS table (use 0 for no color).

Example:

SELECT DIARY,USER,TEXT
(CUSTNOTE <> 0 ? ITOA(CUSTNOTE,0,USECOMMA): ‘’),
CURDATE+STIME,CURDATE+ETIME,(DIARY = :SELECTEDID ? 1 : 0)
FROM DIARIES
WHERE CURDATE BETWEEN :FROMDATE
AND :TODATEAND USER = (SELECT USER FROM USERS !);

Retrieving Task Details (TASK_DETAILS)

Fields to retrieve: Any desired task or employee details from the DIARIES or USERS form.

Query variables (required): TASKID

Note:You can dynamically define procedure messages to serve as field titles for the returned
values by using the # symbol for each field, followed by a message number.

Example:

SELECT DIARIES.TEXT AS ‘#19’,USERS.USERNAME,
DIARIES.CURDATE,DIARIES.STIME,DIARIES.ETIME
FROM DIARIES,USERS
WHERE DIARIES.DIARY = :TASKID
AND DIARIES.USER = USERS.USER;

Retrieving Task Text (TASK_TEXT)

Fields to retrieve: Text, line order (ORD)

Query variables (required): TASKID

Example:

SELECT TEXT, TEXTORD
FROM CUSTNOTESTEXT
WHERE CUSTNOTE = :TASKID
AND TEXTLINE > 0
ORDER BY TEXTORD;

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 277

Adding Tasks to the Chart (TASK_INSERT)

Record a trigger that inserts values in the fields of the designated form when a new task is
opened.

Query variables (required): RESOURCEID, TASKDATE, TASKETIME, TASKSTIME, TASK.

Notes:

• If this step is included, it will be possible to add and update tasks in the load form
designated for the interface used to update/add tasks (defined in parameter 6). If it
is not, it will still be possible to add and update tasks using the dialogue box.

• In order to add or update tasks using either method, parameters must have been
defined to permit additions or revisions to the chart (parameters 9 and 10,
respectively).

Example:

:$.CURDATE = 0+ :TASKDATE;
:$.STIME = 0+ :TASKSTIME;
:$.ETIME = 0+ :TASKETIME;
SELECT USERLOGIN INTO :$.USERLOGIN
FROM USERS
WHERE USER = 0+ :RESOURCEID;

Defining Input Fields for the Dialogue Box
(TASK_EDIT)

Fields to retrieve: Whatever is needed.

Query variables (required): RESOURCEID, TASKID, TASKSDATE, TASKEDATE,
TASKSTIME, TASKETIME.

Notes:

• The fields defined in this query automatically become input fields in the Add/Update
Tasks dialogue box.

• Before recording the query you must list in a note the fields in the GENERALLOAD
table to which the input values will be transferred. Obviously, this list must
correspond to the fields retrieved in the query.

• You must make sure that the query does not fail (even when opening a new task,
when the identifier is 0).

• You can define mandatory fields by adding the letter M in parentheses after the
name of the field in the relevant note.

Example:

/* Load fields: TEXT,DATE1(M),INT3,DATE2,INT4,
TEXT5,TEXT6,TEXT4,TEXT1,TEXT2,TEXT3,TEXT8 */

SELECT CUSTNOTESA.SUBJECT,
(:TASKID <> 0 ? CUSTNOTES.CURDATE : :TASKSDATE) AS '#20',
(:TASKID <> 0 ? CUSTNOTES.STIME : :TASKSTIME) AS '#21',

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 278

(:TASKID <> 0 ? CUSTNOTESA.TILLDATE : :TASKEDATE) AS '#27',
(:TASKID <> 0 ? CUSTNOTES.ETIME : :TASKETIME) AS '#22',
USERS.USERLOGIN AS '#24',USERS2.USERLOGIN AS '#26',
CUSTOMERS.CUSTNAME,PHONEBOOK.NAME AS '#25', CUSTNOTESA.LOCATION
FROM CUSTNOTES, CUSTNOTESA, CUSTOMERS, CUSTNOTETYPES,
PHONEBOOK, USERS, USERS USERS2
WHERE CUSTNOTES.CUSTNOTE = :TASKID
AND CUSTNOTES.CUSTNOTE = CUSTNOTESA.CUSTNOTE
AND CUSTNOTES.CUST = CUSTOMERS.CUST
AND CUSTNOTES.PHONE = PHONEBOOK.PHONE
AND CUSTNOTES.CUSTNOTETYPE = CUSTNOTETYPES.CUSTNOTETYPE
AND USERS.USER =
(:TASKID = 0 ? 0+ :RESOURCEID : CUSTNOTES.CUSER)
AND CUSTNOTESA.CUSER2 = USERS2.USER;

Updating the Display (TASK_REFRESH)

Fields to retrieve: task description, target value, from date/hour, to date/hour, color.

Query variables (required): RESOURCEID, TASKID

Example:

SELECT D.TEXT,ITOA(CUSTNOTES.CUSTNOTE,0,USECOMMA),
D.CURDATE+D.STIME,D.CURDATE+D.ETIME,0
FROM DIARIES D, CUSTNOTES
WHERE CN.CUSTNOTE = :TASKID
AND D.CUSTNOTE = CN.CUSTNOTE
AND D.USER IN (-9999,:RESOURCEID);

Adding a Custom Date Label
(TASK_CUSTOMDATE)

Note: This step is only available in the Windows interface.

This step adds an additional, custom label to dates, which can be accessed by users in the
Timescale definitions of the chart.

Query variables: TASK_CUSTOMDATE_OUT, TASK_CUSTOMDATE_IN

Example:

SELECT DETAILS INTO :TASK_CUSTOMDATE_OUT
FROM STACK4
WHERE KEY = :TASK_CUSTOMDATE_IN;

Office Hours (WORKHOURS)

Fields to retrieve: day, from hour, to hour

Query variables (required): RESOURCEID

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 279

Example:

SELECT WDAY,STARTT,ENDT
FROM USERTMTBL
WHERE USER = :RESOURCEID;

Non-working Days (DAYSOFF)

Fields to retrieve: from hour

Query variables (required): CURDATE

Notes:

• The query acts separately on each day within the designated date range.
• On a regular workday the query should fail.
• On holidays the query should return 0.
• On days preceding holidays the query should return the time work ends.

Example:

SELECT FROMTIME FROM OFFICECLOSED
WHERE CURDATE = :CURDATE;

Employee Work Hours
(RESOURCE_WORKHOURS)

Fields to retrieve: from date/hour, to date/hour

Query variables (required): RESOURCEID, FROMDATE, TODATE

Notes:

• The query acts separately on each employee.
• The query returns all work hours performed by the employee in the desired date

range (i.e., more than one record).
• The date field must also include the time (DATE 14).
• This step can be used in place of the previous two steps (WORKHOURS and

DAYSOFF).

Example:

SELECT WDATE+FROMTIME, WDATE+TOTIME
FROM WORKHOURS
WHERE USER = :RESOURCEID
AND WDATE BETWEEN :FROMDATE AND :TODATE;

Task Dependencies (RELATIONS)

Task dependency is defined as a relationship in which the start or finish date of a task
depends on another task.

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 280

Fields to retrieve: predecessor task identifier, successor task identifier, display color

Query variables (required): FROMDATE, TODATE

Note:This step is only applicable in an manufacturing setting.

Choose List for Employees
(RESOURCE_CHOOSE)

Example:

SELECT USERNAME,USERLOGIN
FROM USERS,USERSB
WHERE USERS.USER = USERSB.USER
AND USERSB.SERVFLAG = ‘Y’
AND USERSB.INACTIVE <> ‘Y’
ORDER BY 1;

Additional Choose Lists (RESOURCE_CHOOSE2,
RESOURCE_CHOOSE3)

Example:

SELECT GROUPDES, GROUPNAME
FROM UGROUPS
WHERE UGROUP <> 0
AND INACTIVE <> ‘Y’
ORDER BY 1;

Update After Choosing an Employee
(RESOURCE_UPDATE)

Query variables: CHOOSEVALUE, GANTTEXEC

Example:

INSERT INTO USERGANTT(EXEC,USER,RESOURCEID)
SELECT 0+:GANTTEXEC, SQL.USER, USER
FROM USERS
WHERE USERLOGIN = :CHOOSEVALUE;

Update After Additional Choose Lists
(RESOURCE_UPDATE2, RESOURCE_UPDATE3)

Query variables: CHOOSEVALUE, GANTTEXEC

Example:

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 281

INSERT INTO USERGANTT(EXEC,USER,RESOURCEID)
SELECT 0+:GANTTEXEC, SQL.USER, USER
FROM USERGROUP
WHERE UGROUP =
(SELECT UGROUP
FROM UGROUPS
WHERE GROUPNAME = :CHOOSEVALUE);

Preparing the LINK File Before Producing Reports
(TASK_PRINT)

Query variables: ZOOMVALUE, TASKID

Note: In order to print reports and/or documents from within the chart, add the print
procedures as additional steps in the chart procedure.

Example:

INSERT INTO CUSTNOTES
SELECT * FROM CUSTNOTES ORIG
WHERE CUSTNOTE = :TASKID;

Parameters for Charts PDF last generated: Dec 10, 2024

Priority SDK Page 282

Programming for Priority Web

Differences from Priority Windows

Programming for the Priority web interface is basically the same as programming for the
Windows interface. However, when working with the web interface you must keep in mind
the different method used to access the Priority server. As a result, the following exceptions
apply:

• When working with attachments, only files located in the system/mail folder can be
interacted with by the user. Any attachments uploaded by code should be stored in
this folder if users need to interact with the attachment.

• You cannot use the EXECUTE command to run entities that require input from the
user or that display output. This is because the entity is executed on the server and
any interface opened will be displayed on the server rather than on the local
computer. In particular, you cannot use WINACTIV to run entities from a trigger step.
Instead, add the procedure as a separate step in the procedure, with the the desired
Entity Name and the Type P. Note that you cannot feed in linked temporary tables to
procedures run as a step.
Note: This also extends to ACTIVAT and ACTIVATF if they run an entity that
requires input, such as the SHVA program.

• You cannot add the following syntax to a procedure step in order to open a form
when running a procedure:
EXECUTE WINFORM 'ORDERS';
Instead, add a new procedure step with the desired Entity Name and the Type F.

• You cannot use the following syntax in a procedure step in order to execute a
document when running a procedure:

EXECUTE WINACTIV '-P', 'WWWSHOWORDER', 'ORDERS', :TMPORDERS;

Use WINHTML instead.

• If the value in the Application column is 4 characters long and ends in 0 (zero), the
entity in question will not be displayed when working with the web interface.

• In procedures that load or export data, add the UPLOAD or DOWNLOAD step to
upload/download the file in question from the local computer to the server (or vice
versa). Specify the file name in the UPLOAD/DOWNLOAD procedure step.

Example: See the UPLOAD procedure step in the LOADFNC1 procedure
and the DOWNLOAD step in the ULOADFNC procedure.

Note: This step is not necessary when opening or saving a file using an INPUT
parameter of type CHAR that is flagged to display a browse button (in the
Procedure Parameter Extension sub-level form).

Saving Debug Files

A common step when debugging code that includes linked temporary tables is dumping the
contents of the temporary table to a file. This is used to investigate the values the system

Programming for Priority Web PDF last generated: Dec 10, 2024

Priority SDK Page 283

was working with at a certain point in the code. This usually follows the structure:

SELECT COLUMN1, COLUMN2... FROM LINKED_TABLE
TABS :FILENAME;

A common question when developing on Priority Web is how to access these files in a
situation when there is no access to the server machine.

If you are working on Priority’s Cloud, you can use the FilesAPI solution Priority Software
provides. For more information, see the FilesAPI documentation.

However, if you are working on a Priority Web installation without access to the server, the
following workaround may prove helpful:

1. Use NEWATTACH to create a valid attachment file path in WINDBI and save it.
2. In your code, save the results to a temporary file.
3. Copy the results to the file path you created in step 1.
4. Open a form that has an Attachments subform, such as Tasks (CUSTNOTESA).
5. Add a record with an easily remembered name, such as DEBUG.
6. Paste the file path you created in step 1.

/* This sample can be run in SQL Development (WINDBI)*/
/* Create a valid file path */
:DEBUGFILE = NEWATTACH('MyDebug', '.txt');
SELECT :DEBUGFILE FROM DUMMY FORMAT;
/* e.g. '../../system/mail/2023/5/xo3rr23l/dummyfile.txt' */
SELECT SQL.TMPFILE INTO :DAYSLINK FROM DUMMY;
LINK DAYS TO :DAYSLINK;

Programming for Priority Web PDF last generated: Dec 10, 2024

Priority SDK Page 284

GOTO 999 WHERE :RETVAL <= 0;
INSERT INTO DAYS
SELECT * FROM DAYS ORIG;
/* select into the temporary debug file, then copy
to the attachment */
:FILEPATH = STRCAT(SYSPATH('TMP', 1), 'MyDebug.txt');
SELECT DAYNUM, DAYNAME FROM DAYS
TABS :FILEPATH;
UNLINK DAYS;
EXECUTE COPYFILE :FILEPATH, :DEBUGFILE;
LABEL 999;

Programming for Priority Web PDF last generated: Dec 10, 2024

Priority SDK Page 285

Priority Cloud
Development on Priority Cloud is mostly identical to development for Priority Web on a local
installation. However, there are some additional restrictions on working with files:

1. You cannot save files directly to the attachments directory (system/mail) or the cloud
interface directory (system/sync). However, you can create the files first in the
permitted folder, then use the COPYFILE program to copy it to the relevant
directory. For example:

/* Create a valid filename target in system/mail */
SELECT NEWATTACH('aaa1', 'txt') INTO :FOUT FROM DUMMY;
/* Create a temporary file to work with */
SELECT SQL.TMPFILE INTO :F FROM DUMMY;
/* OR */
SELECT STRCAT(SYSPATH('LOAD', 1), 'myfile.txt') INTO :F FROM DUMMY;
/* Create the file */
SELECT * FROM DAYS WHERE DAYNUM BETWEEN 1 AND 4 TABS :F;
SELECT * FROM DAYS WHERE DAYNUM > 4 TABS ADDTO :F;
EXECUTE COPYFILE :F, :FOUT;

The exception to this rule is the WINHTML program, which can save files to system/
mail:

:DOC = 100;
SELECT NEWATTACH('document.pdf') INTO :PATH FROM DUMMY;
EXECUTE WINHTML '-d', 'WWWSHOWORD', '', '', '-v', :DOC, '-pdf', :PATH;

2. Many programs cannot interact directly with files located in attachments directory
(system/mail) or the cloud interface directory (system/sync). For example, you
cannot run a FILTER or DBLOAD on files in the directories. Instead, you should
copy the file into the temporary directory, make the required manipulations as
necessary, then use COPYFILE to copy the new file over back to the protected
folder.

As an example, a scenario where we have an interface file in CSV format in system/
sync. We FILTER it into a tab-separted file, then use DBLOAD to load it into the
database.

:RAWFILE = STRCAT(SYSPATH('SYNC', 1), 'csv_240915.txt')
/* Create temporary files as copy and filter targets */
:RAWTMPFILE = STRCAT(SYSPATH('TMP', 1), 'csv_240915.txt');
:FILTEREDFILE =STRCAT(SYSPATH('TMP', 1), 'tsv_240915.txt');
EXECUTE COPYFILE :RAWFILE, :RAWTMPFILE;
EXECUTE FILTER ',', ',', '09' :RAWTMPFILE, :FILTEREDFILE;
/* load with DBLOAD */
EXECUTE DBLOAD '-L', 'EXAMPLE', -i, :FILTEREDFILE;
/* save a copy of the filtered file as an archive in
system/sync */
:ARCHIVEFILE = STRCAT(SYSPATH('SYNC', 1), 'archive/', 'tsv_240915_bak.txt')
EXECUTE COPYFILE :FILTEREDFILE, :ARCHIVEFILE;

Priority Cloud PDF last generated: Dec 10, 2024

Priority SDK Page 286

system/sync

The system/sync folder is a special folder available in Priority installations on the public
cloud. It provides a location, accessible by SFTP, where users can upload files from an
external source.

The folder behaves a bit differently than regular Priority folders. The following considerations
should be taken into account when using it in code and uploading to it:

1. Priority expects all files and folders in this folder to be entirely in lowercase. If you
upload files with capital letters, Priority cannot interact with them.

2. If you use COPYFILE to copy files to this folder, the name of the created file will
automatically be changed to lowercase.

3. When using COPYFILE, you can specify a subdirectory as part of the name of the
file. If necessary, a directory (in lowercase) with that name will be created. There is
no need to use MAKEDIR beforehand to create the directory.

Priority Cloud PDF last generated: Dec 10, 2024

Priority SDK Page 287

Advanced Programming Tools
The topics in this section demonstrate the usage of advanced programming tools available in
Priority. These tools can be helpful in meeting specific programming needs.

Before you begin, make sure that you are familiar with the basics (e.g., how to create a
procedure or a form interface).

Advanced Programming Tools PDF last generated: Dec 10, 2024

Priority SDK Page 288

Running a Procedure/Report from an
SQLI Step or Form Trigger
You can execute a procedure from an SQLI step of another procedure by executing any of
the following commands: WINACTIV, ACTIVATE or ACTIVATF. This is useful, for example,
when you want to run a report and send it to recipients via e-mail.

The difference between the WINACTIV command and the ACTIVATE and ACTIVATF
commands is that WINACTIV has a user interface, meaning that you can define a progress
bar and/or messages that require a response from the user (using a PRINTF, PRINTCONTF
or CHOOSEF command) and these will be visible to users while the procedure is running,
whereas the ACTIVATE and ACTIVATF commands will not display these elements. As such,
the WINACTIV command should not be used when working with the Priority web interface.

The difference between the ACTIVATE and ACTIVATF commands is that ACTIVATE runs an
.exe file whereas ACTIVATF runs a .dll file. In other words, a new process is created when
the ACTIVATE command is used, whereas a procedure that is activated by the ACTIVATF
command is executed in the same process as the form or procedure from which it is run.

Reports can be executed using the WINACTIV command only.

When using the WINACTIV, ACTIVATE or ACTIVATF commands, you can add two
parameters for a linked table: the Table Name and the linked file.

Examples

Procedures

Executing a Procedure

You have defined a special status for price quotes; whenever a quote receives this status,
you want to open a sales order automatically based on that quote. To do so, create a custom
POST-UPDATE trigger that checks whether the new status assigned to the quote is the
special status and, if so, executes the Open Order procedure (OPENORDBYCPROF) using
any of the three commands mentioned earlier. In the current example, the ACTIVATF
command is used:

GOTO 10099 WHERE :$.CPROFSTAT <> :SPECIALSTATUS;
SELECT SQL.TMPFILE INTO :FILE FROM DUMMY;

LINK CPROF TO :FILE;
GOTO 10099 WHERE :RETVAL <= 0;

INSERT INTO CPROF
SELECT * FROM CPROF O WHERE PROF = :$.PROF;

UNLINK CPROF;

EXECUTE ACTIVATF '-P', 'OPENORDBYCPROF', 'CPROF', :FILE;

Running a Procedure/Report from an SQLI Step or Form Trigger PDF last generated: Dec 10, 2024

Priority SDK Page 289

LABEL 10099;

Executing a Procedure - Linked Table

You can specify a linked table when running a procedure. This table will go to the PAR
variable of the procedure, allowing you to run Form Actions without being in the form.

GOTO 10099 WHERE :$.ORDSTATUS <> :SPECIALSTATUS;
SELECT SQL.TMPFILE INTO :FILE FROM DUMMY;

LINK ORDERS TO :FILE;
GOTO 10099 WHERE :RETVAL <= 0;

INSERT INTO ORDERS
SELECT * FROM ORDERS O WHERE PROF = :$.PROF;

UNLINK ORDERS;

EXECUTE ACTIVATF '-P', 'OPENINVFORORDER', 'ORDERS', :FILE;

LABEL 10099;

Executing a Procedure - External Variables

You can specify one or more variables when running a program. Note that all variables are
received as CHAR variables.

EXECUTE ACTIVATF '-P', 'DEMO_MYPROC', '-var:MODE', 'UPDATE', '-var:QUANT', '500';

You can refer to external variables with the EXTERNAL prefix. Make sure to convert them
first if they need to behave as another type of variable.

:DEMO_QUANT = ATOI(:EXTERNAL.QUANT);
GOSUB 100 WHERE :EXTERNAL.MODE = 'UPDATE';

Reports

Executing a Report

As noted above, reports can only be run by WINACTIV, which should not be used in the Web
interface.

To execute the OPENORDIBYDOER report for a specific customer, the following code would
be used:

:F = '../../output.txt';
SELECT SQL.TMPFILE INTO :CST FROM DUMMY;

LINK CUSTOMERS TO :CST;
GOTO 299 WHERE :RETVAL <= 0;

INSERT INTO CUSTOMERS

Running a Procedure/Report from an SQLI Step or Form Trigger PDF last generated: Dec 10, 2024

Priority SDK Page 290

SELECT * FROM CUSTOMERS O
WHERE CUSTNAME = '250';

UNLINK CUSTOMERS;
EXECUTE WINACTIV '-R', 'OPENORDIBYDOER','CUSTOMERS', :CST;

LABEL 299;

Running a Report and Sending it by E-mail

You might want to create a program that runs a report and sends it to recipients via e-mail.
This is useful, for instance, when you write a procedure that runs a form interface, you
execute this procedure via the Tabula Task Scheduler, and you want to send one of the users
the errors report created by the form interface.

The following code runs a report and then sends the results in an e-mail attachment.

SELECT SQL.TMPFILE INTO :TMP FROM DUMMY;

LINK ERRMSGS TO :TMP;
GOTO 99 WHERE :RETVAL <= 0;

INSERT INTO ERRMSGS
SELECT * FROM ERRMSGS O
WHERE USER = SQL.USER
AND TYPE = 'i';

GOTO 90 WHERE :RETVAL <= 0;

/* to send the report as an attachment to a Priority mail recipient */
:MAILER = SQL.USER;
EXECUTE WINACTIV '-R', 'INTERFACEERR', 'ERRMSGS', :TMP,'-u', :MAILER;

/* to send the report as an attachment to a Priority group,
defined in the UGROUPS form */

:GROUPNAME = 'mailGroup';
EXECUTE WINACTIV '-R', 'INTERFACEERR', 'ERRMSGS', :TMP,'-g', :GROUPNAME;

/* to send the report as an attachment to an external recipient */
:EMAIL = 'example@example.com';
EXECUTE WINACTIV '-R', 'INTERFACEERR', 'ERRMSGS', :TMP,'-e', :EMAIL;

LABEL 90;
UNLINK ERRMSGS;
LABEL 99;

Output

Alternatively, you can redirect the report results to a tab-delimited text file. In this case, you
can use ACTIVATF. For example, the following code saves the output of the
OPENORDIBYDOER report as a text file (tab-delimited) and then sends the results as an e-
mail attachment.

:F = '../..output.txt';

Running a Procedure/Report from an SQLI Step or Form Trigger PDF last generated: Dec 10, 2024

Priority SDK Page 291

SELECT SQL.TMPFILE INTO :CST FROM DUMMY;

LINK CUSTOMERS TO :CST;
GOTO 299 WHERE :RETVAL <= 0;

INSERT INTO CUSTOMERS
SELECT * FROM CUSTOMERS O
WHERE CUSTNAME = '250';

UNLINK CUSTOMERS;

EXECUTE ACTIVATF '-x', :F, '-R', 'OPENORDIBYDOER', 'CUSTOMERS', :CST;

LABEL 299;
MAILMSG 5 TO EMAIL 'demo@demo.com' DATA :F;

You can also redirect the report results to an MS-Excel file. For this command, you need to
provide the Excel file name without a suffix. For example, the following code saves the
ORGUNITS report as an Excel file.

EXECUTE WINACTIV '-P', 'ORGUNITS', '-X', '..\temp\cur';

Running a Procedure/Report from an SQLI Step or Form Trigger PDF last generated: Dec 10, 2024

Priority SDK Page 292

Financial Documents - Initial and
Follow-up Procedures
In the IVTYPES (Financial Documents) form you can set initial procedures and follow-up
procedures to help ensure that financial documents meet your requirements and that
additional actions are taken once a document is finalized (e.g. updating privately created
fields).

These procedures do not receive input. They are run on the server and do not display error/
warning messages.

Initial Procedures

In the PREENAME (Initial Procedure) column of the IVTYPES form, you can set an initial
procedure to check data and ensure that the financial document meets your requirements
before it is finalized.

The following information may be useful when working with initial procedures:

1. An initial procedure cannot include input/output.
2. A list of invoices that are about to be finalized will be added to the STACK2USER

table when the STACK2USER.ELEMENT field contains the INVOICES.IV column
and the current user appears in the STACK2USER.USER field.

3. If you want to include an error message, specify the message number in the
STACK2USER.TYPE field. The message itself should be part of the initial
procedure. You can use the parameters 1,2,3 in the message, which contain the
following values:

1. Parameter 1 – Customer/Vendor Number
2. Parameter 2 – Invoice Date
3. Parameter 3 – Invoice Number

Follow-up Procedures

In the CONTENAME (Follow-Up Procedure) column of the IVTYPES form, you can set a
follow-up procedure to perform additional actions once a document is finalized.

The follow-up procedure runs regardless of whether a document was finalized successfully
or not. Therefore, you should first check which invoices were finalized:

1. The follow-up procedure receives the same link file for the Invoice (INVOICES table)
that is sent to the Finalize Invoice program. The file is located in the PAR variable
(FILE type).

2. You can cross-reference the invoices in the file with invoices in the table to check
which of the invoices was finalized and which remain pending.

Example:

LINK INVOICES TO :$.PAR;
ERRMSG 1 WHERE :RETVAL <= 0;

Financial Documents - Initial and Follow-up Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 293

SELECT IV,IVNUM,TYPE,DEBIT FROM INVOICES FORMAT '../../iv.txt';
SELECT IV,IVNUM,TYPE,DEBIT FROM INVOICES ORIG
WHERE IV = (SELECT IV FROM INVOICES) FORMAT ADDTO '../../iv.txt';
UNLINK INVOICES;

Financial Documents - Initial and Follow-up Procedures PDF last generated: Dec 10, 2024

Priority SDK Page 294

Open Form Record from within a
Procedure
You can use SQL commands to open a given form and retrieve a given record. This is
useful, for instance, when you want to create a new Action from the Sales Orders form that
will open a customer shipment. In this example, once the document is successfully opened,
the Customer Shipments form opens and the new document is retrieved automatically.

The following gives some basic guidelines for creating such an Action:

1. Define an interface (e.g., YUVV_OPENDOC_D) using the GENERALLOAD load
table to open the DOCUMENTS_D form. In the interface definition, the TEXT1
column will update the ORDNAME column in the DOCUMENTS_D form.

2. Create a procedure that runs the interface, and make it an Action from the ORDERS
form. The procedure should include an INPUT step with a PAR parameter of LINE
type, taken from the ORDERS table (where Column Name = ORDNAME). In the
procedure, record the following in the SQLI step:

LINK ORDERS TO :$.PAR;
ERRMSG 1 WHERE :RETVAL <= 0;

:ORDNAME = '';
SELECT ORDNAME INTO :ORDNAME
FROM ORDERS
WHERE ORD <> 0;

UNLINK ORDERS;
ERRMSG 2 WHERE :ORDNAME = '';

LINK GENERALLOAD TO :$.GEN;
ERRMSG 1 WHERE :RETVAL <= 0;

INSERT INTO GENERALLOAD(LINE,RECORDTYPE,TEXT1)
VALUES(1,'1',:ORDNAME);

EXECUTE INTERFACE 'YUVV_OPENDOC_D',SQL.TMPFILE,'-L',:$.GEN;

:DOCNO = '';
SELECT DOCNO INTO :DOCNO
FROM DOCUMENTS
WHERE TYPE = 'D'
AND DOC = (SELECT ATOI(KEY1)
FROM GENERALLOAD
WHERE LINE = 1
AND LOADED = 'Y');

UNLINK GENERALLOAD;
ERRMSG 3 WHERE :DOCNO = '';

:$.DNO = :DOCNO; /* :$.DNO will be used in the next
step to open the ORDERS form in a web client - see below */

Open Form Record from within a Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 295

GOTO 9 WHERE :SQL.NET = 1;

/* to open the form and retrieve newly created
record in Windows client: */
EXECUTE WINFORM 'DOCUMENTS_D','',:DOCNO, '','2';

LABEL 9;

If you are working with the Priority web interface, add another procedure step that is not
executed in the Windows client (use the GOTO procedure step to skip it). In this additional
step, the Entity Name = ORDERS and the Type = F. In the Procedure Parameters sub-level
form, add the parameter DNO (with type CHAR).

Open Form Record from within a Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 296

Print Attachments from a Procedure
To print files (e.g., attachments) from within a procedure, include the PREXFILE program in
an SQLI step. The PREXFILE program receives several parameters:

• If you want to send the attachments directly to the default printer, add the flag ‘-d'. If
you want to choose a printer, leave this parameter empty.

• The program can receive two optional parameters (CHAR type), which receive any
description that should appear on a cover page, to be printed together with the
attachment. If both parameters are empty, no cover page will be printed.

• The program receives a linked table (STACK24 table, FILE type) which receives the
file path(s) of the document(s) to be printed and the order in which multiple
documents should be printed. This table contains the following columns:

• SORT_LINE — Determines the printing order of the documents.
• TEXT1 — The full path and name of the file to be printed.

Examples: To create a new Action from the Sales Orders form, which prints any
documents that are attached to the order, include an INPUT step with a PAR
parameter of LINE type. In the procedure, record the following in the SQLI step:

SELECT SQL.TMPFILE INTO :STK FROM DUMMY;

LINK ORDERS TO :$.PAR;
ERRMSG 1 WHERE :RETVAL <= 0;

LINK STACK24 TO :STK;
ERRMSG 1 WHERE :RETVAL <= 0;

INSERT INTO STACK24(SORT_LINE,TEXT1)
SELECT EXTFILES.EXTFILENUM, EXTFILES.EXTFILENAME
FROM EXTFILES, ORDERS
WHERE EXTFILES.IV = ORDERS.ORD
AND EXTFILES.TYPE = 'O'
AND EXTFILES.EXTFILENUM > 0
AND ORDERS.ORD <> 0;

UNLINK STACK24;
UNLINK ORDERS;

To send the documents and cover page to the default printer, continue the above
code as follows:

EXECUTE PREXFILE '-d', 'description 1', 'description 2', :STK;

To open a window to choose a printer from which to print the documents and cover
page, use the following code instead:

EXECUTE PREXFILE 'description 1', 'description 2', :STK;

To send the documents to default printer without a cover page, use the following
code instead:

EXECUTE PREXFILE '-d', '','', :STK;

Print Attachments from a Procedure PDF last generated: Dec 10, 2024

Priority SDK Page 297

Click2Sign
Version 20.1 introduced the Click2Sign feature, which allows a contact to add their signature
digitally to a document.

Click2Sign General Requirements

To work with Click2Sign the following conditions must be met:

• Priority version 20.1 and up.
• The document printout must be as a template document (Word).
• The document only requires a single singature (one signature tag appears in the

Word template).
• The Priority installation must have a Click2Sign application license (APP016).

Form Requirements

You can only add Click2Sign in documents for forms that fulfil the following conditions:

• The form is managed with a BPM flow chart
• The uppermost level form contains a customer or vendor

Adding Click2Sign to the Document

To add Click2Sign support, copy the standard document printout procedure (or modify an
existing private one), and add the following code to the SQLI stage directly after the first
HTMLCURSOR stage:

:IVC = document identifier
:TYPEC = flowchart type
#INCLUDE func/click2sign

You can find an example of this code in the system in the WWWSHOWCPROF program.

Click2Sign PDF last generated: Dec 10, 2024

Priority SDK Page 298

Encrypting Data
In certain cases, or due to legal requirements, you might need to encrypt sensitive data in
your system and only show the decrypted data to users for a limited time. To encrypt data,
use the CRPTUTIL program:

EXECUTE CRPTUTIL [MODE] -1 [TABLE]

• MODE is an integer with value 2 or 3. 2 will encrypt the data, while 3 will decrypt it.

• The -1 is for the encryption method (AES). The encryption key is unique to each
Priority installation; you cannot transfer encrypted data from one installation and
decrypt it in another.

• TABLE is the table to encrypt. Note that if you are encrypting long strings, the
encrypted data may be longer than can fit in a single field; you may have to allow for
overflow into another line. This is demonstrated with the INTDATA1 field in the
example below.

The following example demonstrates encryption and decryption. You can run it in WINDBI to
better understand the functionality.

SELECT SQL.TMPFILE INTO :TST_STK FROM DUMMY;
LINK STACK_ERR TST_CRPSTK TO :TST_STK;
GOTO 9 WHERE :RETVAL <= 0;
:TST_CRPTMODE = 2; /* EnCrypt */
:TST_STRING1 = 'First very long confidential string 1 in var string1';
:TST_STRING2 = 'Second very long confidential string 1 in var string1';
DELETE FROM STACK_ERR TST_CRPSTK;
INSERT INTO STACK_ERR TST_CRPSTK (LINE, MESSAGE)
VALUES(1, :TST_STRING1);
INSERT INTO STACK_ERR TST_CRPSTK (LINE, MESSAGE)
VALUES(2, :TST_STRING2);
EXECUTE CRPTUTIL :TST_CRPTMODE, -1, :TST_STK;
SELECT LINE, MESSAGE, INTDATA1
FROM STACK_ERR TST_CRPSTK
WHERE LINE > 0 FORMAT;
:TST_CRPTMODE = 3; /* DeCrypt */
EXECUTE CRPTUTIL :TST_CRPTMODE, -1, :TST_STK;
SELECT INTDATA1, LINE, MESSAGE
FROM STACK_ERR TST_CRPSTK
WHERE LINE > 0 FORMAT;
LABEL 9;
UNLINK STACK_ERR TST_CRPSTK;

Encrypting Data PDF last generated: Dec 10, 2024

Priority SDK Page 299

Dynamic SQL

Executing SQL Queries Dynamically

The EXECUTE SQLI command can be used to run SQL commands:

:FILENAME = '..\..\tmp\sqlfile.txt';
EXECUTE SQLI :FILENAME;

This command can be used to run both static (pre-written) or dynamic code.

Note that EXECUTE SQLI will ignore INSERT/UPDATE/DELETE operations unless it is run
by users in the tabula user group, for both dynamic and static code.

Example: See step 20 of the LOADMIGUSERS procedure.

Dynamic SQL PDF last generated: Dec 10, 2024

Priority SDK Page 300

Get Data from the Client INI File
When the user is working in the Windows interface of ''Priority, you can retrieve information
from the user's.ini'' file, by means of the TABINI program (which can be run from a form
trigger or a procedure).

Note the following:

• The first parameter is the section in the .ini file from which you want to retrieve data.
For example, to retrieve data from [Environment], pass 'Environment' as the first
parameter.

• The second parameter is the line that you want to retrieve. For example, to get the
path of the Priority directory, pass 'Priority Directory' as the second parameter.

• The third parameter is a LINK file of GENERALLOAD to which the program writes
the retrieved data – in the first line (LINE = 1), in the TEXT column.

• If you pass empty strings as the first two parameters, the program will return the
name of the .ini file itself.

Example:

SELECT SQL.TMPFILE INTO :A FROM DUMMY;
EXECUTE TABINI 'Environment', 'Tabula Host', :A;
LINK GENERALLOAD TO :A;
SELECT TEXT FROM GENERALLOAD WHERE LINE = 1 FORMAT;
UNLINK GENERALLOAD;

Get Data from the Client INI File PDF last generated: Dec 10, 2024

Priority SDK Page 301

Using Semaphores
If you want to prevent two users from running a given procedure or section of code
concurrently, you can use a semaphore – a variable that can have one of two values (e.g., 0
or 1).

At the beginning of the code/procedure, check the value of the variable:

• If it is 0, this means no program is running this code. The variable should be
updated to 1 and the code can be run. Upon completion, the variable should be set
back to 0.

• If the variable value is 1, this means another program is running this section of code.
You should either skip this section of code or have the user wait for the other
program to finish.

While a customized table can be used for semaphores, the predefined LASTS table is
suitable for this purpose.

LASTS has two columns:

• NAME – CHAR column (key)
• VALUE – INT column

In the NAME column, record a name for the semaphore, using the same prefix that you use
for customizations.

Example: In the following code, the semaphore is a value in LASTS and the value
in the NAME column is SDK_SEMAPHORE:

GOTO 1 FROM LASTS WHERE NAME = 'SDK_SEMAPHORE';

INSERT INTO LASTS(NAME)
VALUES('SDK_SEMAPHORE');

LABEL 1;

UPDATE LASTS
SET VALUE = 1
WHERE NAME = 'SDK_SEMAPHORE'
AND VALUE = 0;
GOTO 99 WHERE :RETVAL <= 0;
.........
UPDATE LASTS
SET VALUE = 0
WHERE NAME = 'SDK_SEMAPHORE';
LABEL 99;

As there may be cases in which the program starts to run the section of code in question, but
does not finish (e.g., power outage, system failure), you will need an additional procedure to
"unlock" the program. This procedure should consists of a single step that resets the
variable:

UPDATE LASTS SET VALUE = 0 WHERE NAME = 'SDK_SEMAPHORE';

Using Semaphores PDF last generated: Dec 10, 2024

Priority SDK Page 302

Alternatively, you can run the code, even if it is "locked" by another user, once a certain span
of time has elapsed since the procedure was "locked." This requires a customized table that
contains the variable:

CREATE TABLE SDK_SEMAPHORES 'Semaphores' 0
NAME(CHAR, 48, 'Semaphore Name')
USER(INT, 8, 'User(id)')
UDATE(DATE, 14, 'Date')
UNIQUE(NAME);

Example: The following code allows the current user to run the section of code,
even though the semaphore is set to 1, once 24 hours have elapsed since the
code was last executed (under the assumption that, if locked that long, something
must have prevented the program from reaching the section of code that resets the
semaphore):

GOTO 1 FROM SDK_SEMAPHORES WHERE NAME = 'SDK_SEMAPHORE';
INSERT INTO SDK_SEMAPHORES(NAME)
VALUES('SDK_SEMAPHORE');

LABEL 1;

UPDATE SDK_SEMAPHORES
SET UDATE = SQL.DATE, USER = SQL.USER
WHERE NAME = 'SDK_SEMAPHORE'
AND UDATE <= SQL.DATE - 24:00;
GOTO 99 WHERE :RETVAL <= 0;
.........
UPDATE SDK_SEMAPHORES
SET UDATE = 0, USER = 0
WHERE NAME = 'SDK_SEMAPHORE';

LABEL 99;

Using Semaphores PDF last generated: Dec 10, 2024

Priority SDK Page 303

Activating Priority Entities from an
External Application

Open a Record from a Hyperlink

To open a Priority entity from a hyperlink, it should point to the following location
(parameters are explained below):

priority:priform\@FORMNAME:DOCUMENTNUM:COMPANY:TABINIFILE:LANG

• FORMNAME is the name of the Priority entity you want to activate (e.g.,
ORDERS). If this is not a form, it must be followed by the initial representing the
entity type (P = procedure; R = report). For example, to activate the Project Reports
procedure, you would use the following syntax:

priform@WWWDB_TRANSORDER_p.P

• DOCUMENTNUM is the ID number of the Priority record you want to retrieve in the
designated form (not relevant when activating other types of entities). This is the
value of the key column in the form's base table. For example, in the ORDERS form
this would be the value of the ORDNAME column; in the CUSTOMERS form, it
would be the value of the CUSTNAME column. This can be left blank to simply open
the form.

• COMPANY is the name of the Priority company in which you are executing the
command.

• TABINFILE is the name of the tabula.ini file (for example: tabdev.ini)
• LANG is the ID number of the language in which you want the form to open, as

defined in the Languages form (e.g., for American English, specify 3).

Open a Record from the Command Prompt
(Windows only)

To open a Priority entity from the command prompt (e.g., from within an external
application), use the following syntax (parameters are explained below):

x:\priority\priform.exe
priform\@FORMNAME:DOCUMENTNUM:COMPANY:TABINIFILE:LANG

If you are running this command from an external application, x:\priority is the folder in which
Priority client files are located on the workstation.

Note: Unlike the Windows client, the web client does not provide a means of receiving a
username and password as parameters when activating a form. If users are not already
logged into Priority on the workstation in question, they will need to enter a username and
password before they can view any data.

Activating Priority Entities from an External Application PDF last generated: Dec 10, 2024

Priority SDK Page 304

Interacting with External Programs

File Management Utilities

Copy a file:
EXECUTE COPYFILE :source, :destination;

[22.1] (Requires up to date BIN folder)
When using copyfile to the MAIL or SYNC system folders, there is no need to create folders
ahead of time. The system will automatically create them as necessary. Note that the names
of created folders are always in lowercase (even if specified in UPPERCASE).

Download a file from the Internet:
EXECUTE COPYFILE '-i', :url, :tofile, timeout, [:msgfile\];

Move a file:
EXECUTE MOVEFILE :f1,:f2;

Delete a file:
EXECUTE DELWINDOW 'f',:f1;

Create a new folder:
EXECUTE MAKEDIR :dir;

Display the date of a given file:
EXECUTE GETDATE 'path/file_name', :$.STK;

Example of use in a procedure step:

LINK STACK TO :$.STK;
ERRMSG 1 WHERE :RETVAL <= 0;
EXECUTE GETDATE 'path/file_name', :$.STK;
:FILEDATE = 0;
SELECT ELEMENT INTO :FILEDATE
FROM STACK
WHERE ELEMENT > 0;
UNLINK STACK;

Display the size of a given file:
EXECUTE GETSIZE 'path/file_name', :$.STK;

Example of use in a procedure step:

LINK STACK TO :$.STK;
ERRMSG 500 WHERE :RETVAL <= 0;
EXECUTE GETSIZE 'path/file_name', :$.STK;
:FILESIZE = 0;
SELECT ELEMENT INTO :FILESIZE
FROM STACK
WHERE ELEMENT > 0;
UNLINK STACK;

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 305

Browsing the Contents of a Folder

EXECUTE FILELIST :DIR,:ST6,:MSG ['-f' | '-R'];

The FILELIST program browses the contents of a specified folder. It is very useful, for
example, when you want to create an automatic procedure (to be run by the Tabula Task
Scheduler) that checks the contents of a folder and loads certain files from that folder into
Priority tables.

The following code is used when you have an external program that creates files in one of
your system folders, and the files contain data of new sales orders that you need to load into
Priority. It is assumed that the files to be loaded are named as follows:
loadorder1201061355.load (where the number represents the date and time the file was
created).

By default, FILELIST loads the results to the STACK6 table, however you can use the ‘-f’ flag
to load the results to the STACK_ERR table, where it also contains data on file size.

EXECUTE FILELIST :DIR,:STK_ERR,:MSG, '-f';

The ‘-R’ flag also uses the STACK_ERR table. When used, it will recursively search within
sub-folders of the specified folder. It will only list files (no directories), including the sub-
folders necessary to reach the file.

EXECUTE FILELIST :DIR,:STK_ERR,:MSG, '-R';

Data mapping for each table:
STACK6

Column Data
NAME File name
TYPE Type of record: F file; D directory; L pagination information
NUM Timestamp (as integer)

STACK_ERR

Column Data
MESSAGE File name
CHARDATA Type of record: F file; D directory; L pagination information
INTDATA1 Timestamp (as integer)
INTDATA2 File size in bytes

Example:

:DIR = STRCAT(SYSPATH('SYNC', 1),'tmpDir');

SELECT SQL.TMPFILE INTO :ST6 FROM DUMMY;
SELECT SQL.TMPFILE INTO :MSG FROM DUMMY;

EXECUTE FILELIST :DIR,:ST6,:MSG;

/* In the linked file of the STACK6 table, you will find all
files and folders under the input directory :DIR. */

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 306

LINK STACK6 TO :ST6;
GOTO 99 WHERE :RETVAL <= 0;

DECLARE NEWFILES CURSOR FOR
SELECT TOLOWER(NAME)
FROM STACK6
WHERE TOLOWER(NAME) LIKE ' loadorder*';

OPEN NEWFILES;
GOTO 90 WHERE :RETVAL <= 0;

:FILENAME = '';
:TOFILENAME = STRCAT(SYSPATH('LOAD', 1), 'Example.load');

LABEL 10;

FETCH NEWFILES INTO :FILENAME;
GOTO 85 WHERE :RETVAL <= 0;

:PATH = STRCAT(:DIR,'/',:FILENAME);
/* now the variable :path holds the filename */

/* there are 2 options to execute the DBLOAD */

/* option 1: */
EXECUTE COPYFILE :PATH, :TOFILENAME;

/* here you need to make sure you define the load Example.load */
EXECUTE DBLOAD '-L', 'Example.load';

/* option 2: add two more parameters to the DBLOAD program;
these parameters tell the DBLOAD program to load the
file that comes after the -i option */

EXECUTE DBLOAD '-L', 'Example.load', -i, :PATH;

LOOP 10;
LABEL 85;
CLOSE NEWFILES;
LABEL 90;
UNLINK STACK6;
LABEL 99;

FILELIST on the Public Cloud (AWS)

On the public cloud, each FILELIST call is limited to 1000 files. To let you know whether
you’ve reached the last page of results, another special record is retrieved with a type of L.
When it’s value is 1, all results have been retrieved. If the value is 0, there are more results
to retrieve. In this case you should UNLINK AND REMOVE the linked table (STACK6 or
STACK_ERR), then rerun the FILELIST command. The next 1000 results will be retrieved.
Repeat this until you’ve found the file you need or reached the end of results.

Misc. Utilities

Note: The SHELLEX command is supported by the Windows client only.

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 307

Open a file using the default application for that file type (SHELLEX):

:file = 'c:\test.doc';
EXECUTE SHELLEX :file; /* if MS-Word is the

default application for files of type *doc*, opens the
c:\test.doc* file in Word */

:file = 'www.google.com';
EXECUTE SHELLEX :file`/* will open

default browser and redirect to the URL specified in :file */

Open a folder in Windows Explorer (SHELLEX):

:file = 'c:\temp';
EXECUTE SHELLEX :file;

Return a random value in decimal or hexadecimal format (PRANDOM):

EXECUTE PRANDOM :file, :outtype;
/*to return a hexadecimal, use Y
as the outtype parameter; to return a decimal, specify anything
other than Y */

Example of use in a procedure step:

SELECT SQL.TMPFILE INTO :STK1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :STK2 FROM DUMMY;
EXECUTE PRANDOM :STK1, 'Y';
EXECUTE PRANDOM :STK2, '';

LINK STACK4 S1 TO :STK1;
GOTO 1 WHERE :RETVAL <= 0;
LINK STACK4 S2 TO :STK2;
GOTO 1 WHERE :RETVAL <= 0;
SELECT DETAILS AS 'RANDOM HEXA'
FROM STACK4 S1 WHERE KEY = 1 FORMAT;
SELECT DETAILS AS 'RANDOM DECIMAL'
FROM STACK4 S2 WHERE KEY = 1 FORMAT;
UNLINK STACK4 S1;
UNLINK STACK4 S2;
LABEL 1;

Output:

```sql
RANDOM HEXA
---------------------------------------------------------
81F5D3AB68A937242E9D888E84924A3C3F22B3261B119A69B49B4936
RANDOM DECIMAL
---------------------------------------------------------
18921701411761541617713724720340145117226422542353165233

Running an External Application (WINAPP)

The WINAPP command allows you to run any application (.exe file) and to define
parameters for it (e.g., a Priority field). The command must be included in an SQLI step of a
Priority procedure and should have the following structure:

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 308



• EXECUTE WINAPP

• The full path in which the external program is located

Note: In the web interface, the WINAPP command can only run external programs if
they are located in the BIN.95 folder of the server.

• The -w parameter (optional). This parameter causes WINAPP to wait until the
external program is completed before returning to Priority.

• The command that runs the application (i.e., the program name, with or without the
.exe suffix)

• Any desired parameter for the external program
• Any Priority parameters that serve as input to the external program.

Strict attention must be paid to the proper punctuation in the command line (see examples
below):

• Use a comma ( , ) to separate command segments.
• Record single quote marks ( ' ) before and after each command segment.
• Add a semi-colon (; ) at the end of the command line.

Examples:

• To run MS-Word:

EXECUTE WINAPP 'C:\Program Files\Microsoft Office\Office', 'WINWORD.EXE';

• To open the tabula.ini file in Notepad and return to Priority only once the user
closes Notepad:

EXECUTE WINAPP 'C:\Windows', '-w','notepad','tabula.ini';

Executing Priority Commands from an External
Application (WINRUN)

Windows Only

Using the WINRUN command, you can execute any Priority entity from the DOS command
prompt. To do so, use the following syntax (parameters are explained below):

x:\priority\bin.95\winrun "" *username password*
x:\priority\system\prep company -nbg ‑err errfile *command arguments*

• x is the drive on which Priority is located. If you are not running this command from
the server, x is the network drive on which Priority is located on the server.

• The second parameter is two double quote marks (“).
• company is the name of the Priority company in which you are executing the

command.
• -nbg — Use this option if you want the entity to run in the foreground, rather than

the background.
• -err errfile — Use this option when executing a procedure using the WINPROC or

WINACTIV commands if you want to have error messages sent to the specified
error file instead of being displayed on screen.

• The command that runs the entity (e.g., WINFORM, WINACTIV), followed by the

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 309



argument(s) required for the specified command. For example:
◦ To open a form, use the WINFORM command, where the argument is the

internal name of the form to be opened.
◦ To run a procedure or report, use the WINACTIV or WINPROC commands,

where the first argument is either -P for a procedure or -R for a report that is
run without an accompanying procedure, and the second argument is the
internal name of the procedure/report.

◦ To run an interface, use the INTERFACE command, where the first
argument is the name of the interface and the second is the name of the
temporary file in which to store load messages.

Notes:

• The WINRUN command will run on the Priority installation referred to in the
C:\Windows\tabula.ini file on the workstation from which the command is run. To
work with a different tabula.ini file, add the command:

set TABULAINIORIG=xxx.ini

where xxx is the name of the file in question.

• When executing the WINACTIV command with the -err errfile option, only
preliminary messages will be written to the specified file (i.e., messages that are not
generated by the procedure itself, but from preliminary programs, such as those that
check for problems with your license and/or user privileges). Messages generated
by the procedure during runtime are written to the ERRMSGS table. Messages are
recorded to this table for the USER that executedthe WINRUN command and with
the TYPE = ‘V’.

Examples

In the following examples, Priority is installed on the server in the d drive, which is mapped
on the workstation as drive p. The WINRUN command is run in the demo company for the
tabula user, whose password is XYZabc1.

• To open the Sales Orders form from the workstation:

p:\priority\bin.95\winrun "" tabula XYZabc1 p:\priority\system\prep demo
WINFORM ORDERS

• To run the Overnight Backflush-New Transact program from the server:

d:\priority\bin.95\winrun "" tabula XYZabc1 d:\priority\system\prep demo
WINACTIV -P BACKFLUSH_ONNEW

• To run the interface that loads sales orders from the server:

d:\priority\bin.95\winrun "" tabula XYZabc1 d:\priority\system\prep demo
INTERFACE LOADORDERS d:\priority\tmp\messages.txt

Interacting with External Programs PDF last generated: Dec 10, 2024

Priority SDK Page 310



Filters - Manipulate Text Files

The FILTER Program

The FILTER program performs various manipulations on the contents of a specified text file.
The examples below illustrate the different functions that the program can perform, such as
finding and replacing all instances of a specific character, changing the character encoding
(e.g., from ASCII to Unicode) and reversing the direction of text in the file. An explanation of
the parameters that are used with this program appears beneath these examples.

• FILTER -replace <Oldstring> <Newstring> <Oldstring> <Newstring> [Input Output]
— replaces the specified string or strings in the input file and outputs the result to
the output file.

• FILTER [-r] <Fromchar> <Tochar> <Targetchar>[Input Output] [-M Msgfile] —
converts each character in the input file that falls within a designated range of ASCII
values (e.g., all uppercase letters from A to Z) to a new character, using the
following formula:
new character = original character + (Targetchar – Fromchar).
The input file should always be in ANSI format. Output is also in ANSI.

Example: The following command iterates through all characters in the input file
that fall within the designated range (all uppercase letters from A to Z) and adds 32
to the ASCII valu e of these characters, thereby converting them to the
corresponding lowercase letter:

EXECUTE FILTER 'A', 'Z', 'a', :INPUT, :OUTPUT;

You can also use this option to convert a tab-delimited file into a comma-delimited
file (where '09' represents the ASCII value of the tab character):

EXECUTE FILTER '09', '09', ',', :INPUT, :OUTPUT;

FILTER parameters

• '-r' — Use this option when you want the FILTER program to reverse the order of
characters in the file (e.g., instead of 'abcd' you receive 'dcba').

• Input, Output — The input and output files to which the FILTER program refers.
• '-M', 'Msgfile' — Use this option when you want the FILTER program to record error

messages in the designated file.

Special Filters

• FILTER ‘-replacef’, ‘[string]’, :FILESTR, [Input Output] — replace the specified string
in the input file with the string contents of another file FILESTR. Useful for when you
need to insert a string longer than the 127 limit of Priority variables into a file.

Encoding Filters

• FILTER -unicode2ascii [Input Output] [-M Msgfile] — converts the input file from

Filters - Manipulate Text Files PDF last generated: Dec 10, 2024

Priority SDK Page 311



Unicode to ASCII.
• FILTER -ascii2unicode [Input Output] [-M Msgfile] — converts the input file from

ASCII to Unicode.
• FILTER -unicode2utf8 [Input Output] — converts a UTF-16 file to UTF-8.
• FILTER -utf82unicode [Input Output] — converts a UTF-8 file to UTF-16.
• FILTER -ofx2xml [Input Output] — converts an ofx file into a regular XML file that

can be read with XMLPARSE.

File Formatting

• FILTER -addcr [Input Output] — When using an SQL query to export data from
Priority tables, the '\n' (new line) character is added automatically to the end of
each line. Use this option to add the '\r' (carriage return) character, as well,
throughout the file (so that each line ends with the characters '\r\n').

• FILTER -trim [Input Output] — trims blank spaces at the beginning and end of each
line in input file; also removes CR (carriage return) at the end of the line.

• FILTER -delnl [Input Output] — Files generated by Priority generally end with an
empty line with a new line (LF) character. This may interfere with external interfaces
that expect files to end differently. This filter deletes the last empty line in a file.

Base64

• FILTER -base64 [Input Output] — encodes a file into base64.
• FILTER -unbase64 [Input Output] — decodes a file from base64. The input file must

be in Unicode format.
• Example

:_PDF = STRCAT(SYSPATH'TMP', 1), 'f.pdf');
:_PDF_B = STRCAT(SYSPATH'TMP', 1), 'f_base64.pdf');
:_PDF2 = STRCAT(SYSPATH'TMP', 1), 'f_new.pdf');
EXECUTE FILTER '-base64', :_PDF, :_PDF_B, SQL.TMPFILE;
EXECUTE FILTER '-unbase64', :_PDF_B, :_PDF2, SQL.TMPFILE;

• FILTER ‘-replacestrbase64’, [Input, Output],’[stringToReplace]’, fileToConvert,
SQL.TMPFILE — replaces the specified string in the input file with the result of
converting another file to base64. Useful for inserting base64 data into JSON based
requests.

Filters - Manipulate Text Files PDF last generated: Dec 10, 2024

Priority SDK Page 312



Interacting with Webservices via
WSCLIENT

There was a brief period where WSCLIENT could be used as an SFTP client. This
functionality is replaced by the SFTPCLNT program.

Using the WSCLIENT program you can make requests to an external web service. The
WSCLIENT program is generic and can make requests to most web services. Use the
following syntax to work with a web service (optional parameters are specified in square
brackets [ ]):

EXECUTE WSCLIENT :endpoint_url, :inFile, :outFile [, '-msg', :msgFile] [[, '-head2',
:oneHeader] | [, '-head', :headerFile]] [, '-usr', :wsUser [, '-pwd', :wsUserPwd] [, '-
domain', :userDomain]] [, '-tag'|'-val', :tagName] [, '-action', :soapAction'] [, '-
timeout', :msec] [, '-content', :contentType'] [, '-method', :method] [‘-headout’
headers_response_outfile] [, '-authname, :tokenCode] [, '-urlfile', urlfile];

WSCLIENT Parameters

• :endpoint_url – the URL of the web service. Limited to 127 characters.
• :inFile – the file being sent to the web service. The infile should be unicode - it will

be converted as necessary if a different encoding is speficied in the content-type.
• :outFile – the file where the response from the web service will be stored.
• [, '-msg', :msgFile] – The file in which error messages will be recorded.
• [[, '-head2', :oneHeader] | [, '-head', :headerFile]] – header data to be sent with the

request. You can specify multiple instances of the –head2 parameter, each with
different headers. For example: '-head2', :headerA, '-head2',
:headerB,... Alternatively, you can provide a single header file using -head. Note
that each header file must include a new line at the end, including the last one.

• [, '-usr', :wsUser [, '-pwd', :wsUserPwd] [, '-domain', :userDomain] – use to specify
username, password, and domain (if necessary).

• [, -tlscert "certData" "pem password"] - if asked to provide client-side certificate
authentication, use this option. certData should be the client certificate or the path to
the file in PEM format, while pem password is the password for accessing it. The
CertData file should contain the certification and its corresponding private key.

• [, '-tag'|'-val', :tagName] – if the response uses XML, you can specify a tag to extract
from the response. Alternatively, you can use –val to extract the contents of the tag
(without the tag itself).

• [, '-action', :soapAction'] – if the web service uses SOAP, you can specify the SOAP
action to perform.

• [, '-timeout', :msec] – wait time, in milliseconds, before the request times out
• [, '-content', :contentType'] – the content type of the request (such as application/

json). Adds an approriate content-type header to the request.
In the case of XML, the content type must match the one encoding specified in the
XML file header, e.g. text/xml;charset="utf-8" should be matched in the XML with:

<?xml version="1.0" encoding="UTF-8"?>

Interacting with Webservices via WSCLIENT PDF last generated: Dec 10, 2024

Priority SDK Page 313



• [, '-method', :method] – if the remote web service is REST based, the HTTP method.
The default method is POST, but you can specify others (e.g. GET, PATCH).

• [‘-headout’ headers_response_outfile] - If some of the data returned by the response
is in the header of the response (instead of the body), use this option to store the
header response in a file.

• [, '-authname, :tokenCode]; – if the remote web service uses OAuth2 for
authorization, the OAuth2 token code that contains the access token. See
Authenticating With OAuth2 for more information.

• [, '-urlfile', urlfile] – if the URL is greater than 127 characters, add this option to the
WSCLIENT program to transmit the endpoint_url within an ASCII file. When using
this option, the parameter :endpoint_url must be an empty string:
EXECUTE WSCLIENT '', :INFILE, :OUTFILE

Notes:

• Error messages are also written to the ERRMSGS table with type "w" under
SQL.USER.

• You can use the XMLPARSE command to read a response received as an XML or
JSON file.

• Requests sent to the web service and response received will be written to the server
log when it is set to record DEBUG level messages.

Authenticating With OAuth2

You can use WSCLIENT to communicate with services that require OAuth2 authentication.
Doing so requires some additional setups:

1. In Priority, open the OAuth2 Definitions form.
2. Record a Token Code and Token Description for the web service. You should use

your custom prefix for the code, e.g. DEMO_TOKEN.
3. Register in the web service provider's website, and obtain the following:

◦ ClientID
◦ Client Secret & Client Secret 2 (if the secret exceeds the width of Client

Secret)
◦ Token URL
◦ OAuth2 URL

Fill them in the appropriate fields in the form.

1. Next, fill in the Redirect Url. You can work with Automatic Redirect or OOB
Redirect. Automatic Redirect makes the process of obtaining a token simpler
compared to OOB which requires an additional step.

◦ To work with Automatic Redirect, the web service provider must support this
option. In addition, you must have a Priority Application Server installed.
To obtain a Redirect URL, run the Update Redirect URL program from the
list of actions in the OAuth2 Definitions form. The Redirect URL is filled in
the form. Copy and register it with the provider.

◦ The parameters of the OOB Redirect are supplied by the web service
provider. They should appear similar to this example:
<urn:ietf:wg:oauth:2.0:oob>. Record them in the Redirect URL field in
the OAuth2 Definitions form.

2. Fill in the Scope. This should also be supplied by the provider, and end with
offline_access. For example: write:vat read:vat offline_access.

The following fields are only available starting with version 22.1:

Interacting with Webservices via WSCLIENT PDF last generated: Dec 10, 2024

Priority SDK Page 314



1. Additional parameters for the URL can be specified in Additional Parameters.
2. The checkboxes control the behavior of the tokens:

◦ Encrypted Tokens - will automatically encrypt the received tokens so
users cannot copy tokens of other users.

◦ By User - if selected, users can only view their own tokens in the sub-level
forms.

◦ Multi-company - determines whether token is multi-company, i.e. persists
between different companies in the system. Single-company tokens need a
new token per company in the system.

You can now obtain the access token to work with the web service:

1. In the OAuth2 Data subform, record an Entity ID and Description and run the Get
New Token from the list of actions.
Starting with version 22.1, you can also define tokens as multi-company and obtain
tokens in the Auth Data (Multienv) subform instead.

2. A browser window opens, where you will be prompted to login to your account with
the vendor (e.g. VAT service).

3. If you work with Automatic Redirect, the Access Token and Refresh Token are
obtained automatically.

4. If you work with OOB Redirect, the browser will navigate to a new page, where a
long string of characters appears. Copy this string and paste it into the input window
in Priority.

5. The Access Token and Refresh Token have been filled in. If you need to refresh
your access token in the future, you can do so by running Refresh Token from list
of actions in the form.

Interacting with Webservices via WSCLIENT PDF last generated: Dec 10, 2024

Priority SDK Page 315



Parsing XML and JSON

Working with XML

Parsing an XML File

In addition to reading data from an XML/JSON file via a form load, you can also use the
XMLPARSE command. When the file contains several instances per tab, include the –all
parameter to parse the entire file. Omit it to limit results to the first instance of each tab.

Note: XMLPARSE can read a maximum of 1023 characters in a single XML tag.

Example:

SELECT SQL.TMPFILE INTO :OUTXMLTAB1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :OUTXMLTAB2 FROM DUMMY;
SELECT SQL.TMPFILE INTO :MSG FROM DUMMY;
LINK INTERFXMLTAGS I1 TO :OUTXMLTAB1;
GOTO 500 WHERE :RETVAL <= 0;
LINK INTERFXMLTAGS I2 TO :OUTXMLTAB2;
GOTO 500 WHERE :RETVAL <= 0;

:FILE = STRCAT(SYSPATH('LOAD',1), 'example.xml');

EXECUTE XMLPARSE :FILE, :OUTXMLTAB1, 0, :MSG; EXECUTE XMLPARSE :FILE,
:OUTXMLTAB2, 0, :MSG, '-all';
SELECT LINE, TAG, VALUE, ATTR
FROM INTERFXMLTAGS I1 WHERE LINE <> 0 FORMAT;
SELECT LINE, TAG, VALUE, ATTR
FROM INTERFXMLTAGS I2 WHERE LINE <> 0 FORMAT;
LABEL 500;
UNLINK INTERFXMLTAGS I1;
UNLINK INTERFXMLTAGS I2;

When the XML file looks like this:

Parsing XML and JSON PDF last generated: Dec 10, 2024

Priority SDK Page 316



results for the above two EXECUTE commands (without the –all parameter and with it) are
as follows:

Working with XML PDF last generated: Dec 10, 2024

Priority SDK Page 317



Inserting Data into an XML Tag

You can use the INSTAG command to insert data into an XML tag in an existing file.

Syntax:

EXECUTE INSTAG 'path_to_xml_file', 'path_to_data_file', 'tag_name';

You can provide the file paths and tag name as variables:

:XMLFILE = 'path_to_xml_file';
:DATAFILE = 'path_to_data_file';
:XMLTAG = 'tag_name';
EXECUTE INSTAG :XMLFILE, :DATAFILE, :XMLTAG;

A common use case for this functionality is inserting image data into an XML file as base64:

:IN_JPG = STRCAT(SYSPATH('TMP', 0), 'my_jpg.jpg');
:IN_JPGBASE = STRCAT(SYSPATH('TMP', 0), 'my_jpg.base');
EXECUTE FILTER '-base64', :IN_JPG, :IN_JPGBASE;
:IN_XML = STRCAT(SYSPATH('TMP', 0), 'file.xml');
:IN_TAG = 'attach';
EXECUTE INSTAG :IN_XML, :IN_JPGBASE, :IN_TAG;

Working with XML PDF last generated: Dec 10, 2024

Priority SDK Page 318



Note that if there are multiple tags with the same name in the XML file, the contents will be
inserted into the first tag found.

Parsing JSON
Parsing a JSON file works almost exactly like parsing XML, with the small addition of a ‘Y’ to
the end of the EXECUTE XMLPARSE command.

Example:

SELECT SQL.TMPFILE INTO :OUTJSONTAB1 FROM DUMMY;
SELECT SQL.TMPFILE INTO :OUTJSONTAB2 FROM DUMMY;
SELECT SQL.TMPFILE INTO :MSG FROM DUMMY;
LINK INTERFXMLTAGS I1 TO :OUTJSONTAB1;
GOTO 500 WHERE :RETVAL <= 0;
LINK INTERFXMLTAGS I2 TO :OUTJSONTAB2;
GOTO 500 WHERE :RETVAL <= 0;
:FILE = STRCAT(SYSPATH('LOAD',1), 'example.json');

EXECUTE XMLPARSE :FILE, :OUTJSONTAB1, 0, :MSG, '', 'Y'; /*Note the extra 'Y'*/
EXECUTE XMLPARSE :FILE, :OUTJSONTAB2, 0, :MSG, '-all', 'Y';
SELECT LINE, TAG, VALUE, ATTR FROM INTERFXMLTAGS I1 WHERE LINE > 0 FORMAT;
SELECT LINE, TAG, VALUE, ATTR FROM INTERFXMLTAGS I2 WHERE LINE > 0 FORMAT;
LABEL 500;
UNLINK INTERFXMLTAGS I1;
UNLINK INTERFXMLTAGS I2;

Parsing JSON PDF last generated: Dec 10, 2024

Priority SDK Page 319



Parsing JSON PDF last generated: Dec 10, 2024

Priority SDK Page 320



Access SFTP with SFTPCLNT
23.1 - Included starting with BIN95 version 9. Backports available for version 22.1 (BIN V.
90) and 23.0 (BIN V. 32) that add the SFTP Definitions form. These backports are available
on Priority Xpert.

The SFTPCLNT utility can be used to access an SFTP server and perform the following
actions:

• Upload a file
• Download a file
• List the contents of a folder on the server.

Defintions for SFTP

Before you can work with SFTP, you must first set up a record in the Definitions for SFTP
form (System Management > System Maintenance > Internet Definitions > Definitions for
SFTP).

In this form, you need to fill in the following details:

• Code - The identifying code of the SFTP server/folder. This will be filled in that
CONFIGID when using WSCLIENT.

• SFTP Folder Desc - a short description of this server/folder.
• Path - the URL/IP of the server. This should begin with sftp:// and end with a

port number (generally, port 22). For example: sftp://20.0.0.195:22
• User - the username for accessing the server.
• Password - the password for accessing the server.

Note: SFTP functionality only supports authentication with a username and password.

Uploading/Downloading a File

EXECUTE SFTPCLNT 'CONFIGID', '-u[pload]' || '-d[ownload]', 'SOURCEFILE',
'DESTINATIONFILE', ['-msg MSGFILE'], [-timeout miliseconds]

• CONFIGID - the identifier of the SFTP configuration in the Definitions for SFTP
form (System Management > System Maintenance > Internet Definitions >
Definitions for SFTP).

• -u or -d - determines whether you are uploading a file to the SFTP server or
downloading a file from it.

• SOURCEFILE - The file to upload from Priority, or to download from the SFTP
server.

• DESTINATIONFILE - the name of the file to create on the SFTP server (when
uploading) or on the Priority server (when downloading). Note that you cannot
create folders on the SFTP server as part of the upload.

• [, '-msg', :msgFile] – The file in which error messages will be recorded.
• *[‘-timeout’ miliseconds] - determines the time in miliseconds before a connection

timeout is reported.

Access SFTP with SFTPCLNT PDF last generated: Dec 10, 2024

Priority SDK Page 321



Examples

/* In this example, we upload a file to the sftp server
from Priority */
SELECT SQL.TMPFILE INTO :SOURCE FROM DUMMY;
SELECT 'THIS IS A TEST' FROM DUMMY
ASCII :SOURCE;
/* filepaths on the SFTP server are relative to the path
provided in the Defintions for SFTP form */

:DEST = 'destinationTest.txt';

/* 'ch1' is the code of the SFTP server in the Defintions
for SFTP form */
EXECUTE SFTPCLNT 'ch1' '-u', :SOURCE, :DEST;

/* In the second example, we download a file from a folder
on the server to Priority */
:SRC = 'TestFolder/GrabTest.txt';
:TRGT = STRCAT(SYSPATH('LOAD', 1), 'GrabTarget.txt');

EXECUTE SFTPCLNT 'ch1' '-d', :SRC, :TRGT;

Listing the Contents of a Folder

EXECUTE SFTPCLNT 'CONFIGID' '-l[ist]' 'DIR', 'TABLEFILE',
['-msg MSGFILE'], [-timeout miliseconds]

When working in list mode, SFTPCLNT is very similar to the FILELIST program for viewing
the contents of a local folder.

• CONFIGID - the identifier of the SFTP configuration in the Definitions for SFTP
form (System Management > System Maintenance > Internet Definitions >
Definitions for SFTP).

• -l indicates that the client should return the contents of the specified directory.
• DIR - The directory on the SFTP server whose contents you wish to view.
• TABLEFILE - a temporary file variable that will list the contents of the directory on

the server.
• [, '-msg', :msgFile] – The file in which error messages will be recorded.
• *[‘-timeout’ miliseconds] - determines the time in miliseconds before a connection

timeout is reported.

Example

SELECT SQL.TMPFILE INTO :ST6 FROM DUMMY;
EXECUTE SFTPCLNT 'vg1', '-l', 'pub/example', :ST6;
LINK STACK6 TO :ST6;
GOTO 99 WHERE :RETVAL <= 0;
SELECT NAME, TYPE, 01/01/88 + NUM FROM STACK6 WHERE NAME <> '' FORMAT;
UNLINK STACK6;
LABEL 99;

Results

Access SFTP with SFTPCLNT PDF last generated: Dec 10, 2024

Priority SDK Page 322



NAME                                T NUM
----------------------------------- - -------------
KeyGenerator.png                    F  02/10/23 12:45
KeyGeneratorSmall.png               F  12/10/23 08:15
ResumableTransfer.png               F  02/10/23 10:13

Access SFTP with SFTPCLNT PDF last generated: Dec 10, 2024

Priority SDK Page 323



Defining Word Templates for Specific
Records
Suppose you have defined several Word templates in a given form, and you want to use a
particular one when sending specific form records to Word. This can be achieved by adding
a form column of INT type, whose name contains the string AWORD (e.g., PRIV_AWORD).
This column receives the number of one of the Word templates defined for the form in
question.

Note: Word templates are saved as form messages and assigned a negative number
(hence, they do not appear in the Error & Warning Messages sub‑level of the Form
Generator form).

In the following example, several Word templates have been defined for the Tasks form, and
you want to use the designated Task Code to determine which template is used for each
task.

1. Add a new column to the CUSTTOPICS table: PRIV_AWORD – INT, 8, Word
Template.

2. Add the following columns to the CUSTTOPICS form:

Form Column
Name

Column
Name

Table Name
Column

ID
Join

Column
Join
Table

Join
ID

PRIV_AWORD PRIV_AWORD CUSTTOPICS 0 NUM TRIGMSG 5?
PRIV_MESSAGE MESSAGE TRIGMSG 5 0
PRIV_EXEC EXEC TRIGMSG 5 0

Note: The TRIGMSG table is outer-joined because a Word template can be deleted.

3. Hide the PRIV_EXEC column and mark the PRIV_MESSAGE column as read‑only.
4. Create a PRE-FORM trigger (PRIV_PRE-FORM) in the PRIV_EXEC column, which

retrieves the internal number of the CUSTNOTESA form:

`:PRIV_EXEC = 0;`
`SELECT EXEC INTO :PRIV_EXEC`
`FROM EXEC WHERE ENAME = 'CUSTNOTESA'`
`AND TYPE = 'F';`

5. Set the value of the PRIV_EXEC form column in the Form Column Extension sub-
level form, in the Expression/Condition column:
= :PRIV_EXEC /* the variable was initiated in PRIV_PRE-FORM */

6. In the Error & Warning Messages form, add message 501:
“Select a value from the Choose list.”

7. Add the following 3 triggers to the PRIV_AWORD form column:
◦ PRIV_CHECK-FIELD

ERRMSG 501 WHERE :$.@ <> 0 AND NOT EXISTS
(SELECT * FROM TRIGMSG WHERE EXEC = :PRIV_EXEC

Defining Word Templates for Specific Records PDF last generated: Dec 10, 2024

Priority SDK Page 324



AND NUM = :$.@
AND NUM < 0);

◦ PRIV_CHOOSE-FIELD
List of Word templates defined for Tasks (CUSTNOTESA) form

SELECT MESSAGE, ITOA(NUM) FROM TRIGMSG
WHERE EXEC = :PRIV_EXEC
AND NUM < 0
ORDER BY 2;

◦ PRIV_POST-FIELD

:$.PRIV_EXEC = :PRIV_EXEC;

8. Add a hidden column to the CUSTNOTESA form:

Form Column Name Column Name Table Name
PRIV_AWORD PRIV_AWORD CUSTTOPICS

This column is filled in with the number of the template defined for the task code of the
current task. Thereafter, when a user chooses to send a task to Word, if the task code of the
task in question has been assigned a Word template, the information is sent directly to the
designated template.

If the user flags the All Displayed Records option, those records with a different Word
template than that defined for the current record are not sent to Word.

Defining Word Templates for Specific Records PDF last generated: Dec 10, 2024

Priority SDK Page 325



Using Custom Form Columns in the
Business Rules Generator
The Business Rules Generator enables users to set up error, warning, e-mail or text
messages (SMS) that are triggered automatically when certain conditions are met. When the
action selected is Send e-mail or Send text msg, users can choose to send the e-mail/text
message to any of the form columns appearing in the provided Choose list. If you want a
custom form column to appear in this Choose list, it must meet one of the following
conditions:

• The name of a calculated form column must contain the following string: EMAIL
(e.g., PRIV_ORDEMAIL). The e‑mail or text message will be sent to the address or
phone number defined in that form column.

• A regular form column must be taken from one of the following tables/table columns:
◦ CUSTOMERS (CUSTNAME)
◦ SUPPLIERS (SUPNAME)
◦ AGENTS (AGENTNAME )
◦ USERSB (SNAME)
◦ PHONEBOOK (NAME)
◦ USERS (USERLOGIN)
◦ UGROUPS (GROUPNAME)

In such a case, the Business Rules Generator uses the e-mail address or phone number
defined in the specified table: CUSTOMERS.EMAIL/PHONE, SUPPLIERS.EMAIL/PHONE,
AGENTS.EMAIL/PHONE, USERSB.EMAIL/CELLPHONE, PHONEBOOK.EMAIL/
CELLPHONE. For form columns taken from the USERS table, the e-mail/text message will
be sent to the employee associated with the specified user (in the Personnel File form). For
form columns taken from the UGROUPS table, the e-mail/text message will be sent to the
members of the specified group.

Using Custom Form Columns in the Business Rules Generator PDF last generated: Dec 10, 2024

Priority SDK Page 326



VSCode Priority Dev Tools Extension

The Priority Dev Tools extension is currently in beta and some features are still in
development.

Introduction

Priority has a dedicated Dev Tools extension available for Visual Studio Code, currently in
beta. This extension will assist you in developing quickly and productively in the Visual
Studio Code environment.

Features

• Edit, create, and delete Priority form/field triggers
• Edit SQLI steps in procedures
• Syntax check for SQLI
• Code completion for table names, keywords, form fields, and #INCLUDE statements
• Code snippets for most built-in Priority functions
• WINDBI (SQL Development program)
• Navigation between entities using breadcrumbs
• “Go to definition” for #INCLUDE statements and table definitions
• Form and Program preparation
• Code folding
• Vertical ruler

Working Assumptions

To start working the extension, ensure that:

• You have a Priority application server.
• You have an active user in a working Priority Web environment.
• You have a license for the APPVSCODE application (check the Applications for

License form).
• You know the URL to access the OData service (run the Send Program Activation

Link program).
• Visual Studio Code is installed on your computer.

Setups

1. In Priority, add your username to the APPVSCODE application:

a. Open the Personnel File form and retrieve your username. If you do not have an
API User Name, define one now. The user name must be composed of English
characters only.

b. Open the Applications for License form.

VSCode Priority Dev Tools Extension PDF last generated: Dec 10, 2024

Priority SDK Page 327



c. Locate the APPVSCODE application in the Application ID field. If APPVSCODE
does not appear, run the Renew License program.

d. Move to the Users for Application subform and add your username.

2. Create an empty folder on your PC. This folder will be used for intermediate WINDBI
files.

Add an Environment

1. Go to this link to install the Priority Dev Tools extension.

2. Click the Install button and open the installation in Visual Studio Code.

3. In Visual Studio Code, click the Install button.

4. Navigate to the File menu from the menu bar. Click on Open Folder and select the
folder you created in the Setups stage.

5. Press F1 to show the Command Palette.

6. Find and run the command Priority: Open Environments Wizard….

7. Click on Add environment with OData URL.

VSCode Priority Dev Tools Extension PDF last generated: Dec 10, 2024

Priority SDK Page 328



8. In the Wizard, enter the following information:

Field Explanation
Environment

name
Assign a name for the environment.

OData URL
Full URL for the OData service, for example, https://s.priority-

connect.online/odata/Priority/tabula.ini/mycompany/
Username Your API username
Password Your password

Alternatively, you can use personal access tokens instead of Username/Password:

◦ Open the REST Interface Access Tokens form in Priority, assign a
Personal Access Token to your user, and take note of the token.

◦ Enter the token in the Username field and PAT as the password.

VSCode Priority Dev Tools Extension PDF last generated: Dec 10, 2024

Priority SDK Page 329



9. Click on Add.

Using the Extension

• In the Activity Bar (on the left), click the Priority icon to see the Environments
Explorer. All your environments will appear here.

• Expand an environment to view its tables, forms, and programs.

• Selecting an object will open it in a new editor window as a file.

• Saving a file will update Priority.

• To prepare a form or procedure, run the relevant Prepare operation using the
command palette (F1).

• Press F12 to view the contents of an #INCLUDE statement or a table definition or
Alt+F12 to peek into it.

• Code completion: Press Ctrl+Space to trigger code completion for table names,
keywords, form fields, and #INCLUDE statements. If you're unfamiliar with VS Code,
click here for general tips.

VSCode Priority Dev Tools Extension PDF last generated: Dec 10, 2024

Priority SDK Page 330



Using WINDBI

• Right-click on an environment in the Environments Explorer and select New SQLI
to open a new WINDBI window for that environment.

• In the Environments Explorer, select a company in the Companies panel.

• To run the SQLI code, click the Run SQLI button in the top-right corner or use the
default keyboard shortcut Alt+X.

• All WINDBI actions are available if you right-click on the environment name in the
Environments Explorer.

VSCode Priority Dev Tools Extension PDF last generated: Dec 10, 2024

Priority SDK Page 331


	Release Notes and Change Log
	SDK 24.1
	Decmeber 2024

	SDK 24.0
	September 2024
	July 2024
	June 2024

	SDK 23.1
	April 2024
	December 2023
	October 2023

	SDK 23.0
	July 2023
	June 2023
	May 2023
	April 2023

	SDK 22.1
	March 2023
	February 2023
	November 2022
	October 2022

	SDK 22.0
	September 2022
	August 2022
	May 2022
	April 2022

	SDK 21.1
	Feb 2022
	Jan 2022


	Removed Entities
	23.1
	Entities Removed from the System
	Entities Removed from Menus
	Removed Subforms
	Removed Actions

	23.0
	Entities Removed from the System
	Entities Removed from Menus
	Removed Subforms
	Removed Actions

	22.1
	Entities Removed from the System
	Entities Removed from Menus
	Removed Subforms
	Removed Actions

	22.0
	Entities Removed from the System
	Entities Removed from Menus
	Subforms Removed
	Removed Actions


	Customization Rules and Best Practices
	General Rules
	Development Process
	Names
	Code

	Tables
	Rules for Columns
	Rules for Keys

	Forms
	Reports
	Procedures
	Best Practices
	Recommendations


	Setting Up the Dev Environment
	User Permissions
	Expose the Table Generator
	Developing for Multiple Languages
	Recommended: Add the Util Folder
	Development Permissions for non-tabula User Group

	Tables
	Table Names
	Table Type
	Rules for Modifying Tables and Table Columns
	When Installing a Revision with Modifications of a Standard Table



	Table Columns
	Column Names and Titles
	Column Types
	Decimal Precision
	Rules for Columns

	Table Keys
	Introduction
	The Autounique Key
	Unique Keys
	Nonunique Key
	Rules for Keys
	Keys and Record Links

	Creating and Modifying Tables
	Introduction
	Programs for Tables
	Programs for Columns
	Programs for Keys

	Table Dictionaries and Reports
	Dictionaries and Reports

	DBI Syntax
	Introduction
	Syntax Conventions
	Modifying Database Tables via SQL Statements
	Syntax for Tables
	Syntax for Columns
	Syntax for Keys
	Syntax for Key Columns


	Syntax Conventions
	Syntax Conventions

	View Table Structure
	The SQL Development Program

	Executing SQL
	The SQL Interpreter

	SQL Functions and Variables
	Introduction
	System Functions
	Variables
	System Variables
	Reserved Words for :KEYSTROKES Variable
	Variable Types

	Flow Control
	Flow Control Commands
	Syntax of the Flow Control Commands
	Examples of Usage
	Using Sub-routines

	Additions and Revisions to Standard SQL Commands
	Additions and Revisions to Standard SQL Commands
	Output Formats for SELECT
	Extended LIKE Patterns
	Outer Join
	Using OFFSET and FETCH as part of SQL Queries

	Execution Statements
	Introduction
	ENV
	EXECUTE

	LINK and UNLINK
	The Commands
	Syntax
	Explanation and Examples
	LINK ALL

	Return Values and Statement Failure
	Table of Return Values and Statement Failure

	Non-standard Scalar Expressions
	Introduction
	Conditional Expression
	Numbers
	Mathmatical Expressions
	Comparisons
	Conversions

	Strings
	Conversions
	String Information
	String Manipulation
	Files and Messages

	Dates
	Date Parsing
	Calculated Dates
	Date Conversion


	ATOD and DTOA
	Syntax
	Pattern Components for ATOD and DTOA Expressions
	Converting a String to a Date: Examples
	Converting a Date to a String: Examples

	Forms
	Introduction
	Form Name
	Form Title
	Base Table
	Application
	Module
	Query Forms
	Blocking Record Deletion
	Blocking Definition of a Multi-Company Form
	When Creating a New Form
	Form Capacities

	Form Columns
	Introduction
	Column Names and Titles
	Order of Column Display
	Hidden Columns
	Mandatory Columns
	Read-only Columns
	Balances: Special Read-only Columns

	Boolean Columns
	Keyword Columns
	Attachment Columns
	URL Columns
	EMail Columns
	Address Columns
	Special Date Columns

	Sorting Data
	Imported Data
	Join Columns
	Special Joins

	Calculated Columns
	Custom Columns: Data Authorization
	Adding Form Columns to Split Reconciliations Forms
	MDM Features
	Supporting Transformation Interfaces
	MDM-only Permissions


	Sub-level Forms
	Introduction
	Relationships Between Upper- and Sub-level Forms
	Linking Upper-level and Sub-level Forms
	Creating a Form Tree
	Linking the Tree to a Menu

	Conditions of Record Display and Insertion
	Introduction
	Query Condition — Record Display
	Assign Condition — Record Display and Insertion

	Actions
	Form Refresh
	Accessing Related Forms
	Introduction
	The Target Form
	Dynamic Access

	Creating a Text Form
	Introduction
	Removing HTML Tags from a Text Table

	Default Designs for Forms
	What is a Default Design for a Form?
	Creating a Default Design
	Distributing a Default Design in a Revision
	Form Triggers
	Introduction

	SQL Variables
	Introduction
	Form Column Variables
	Wildcards
	User-defined Variables
	Global Variables in Forms
	The DUMMY Table
	Text Form Variables


	Built-in Triggers
	Introduction
	Field Triggers
	Insert Triggers
	Update Triggers
	Delete Triggers

	Creating your Own Triggers
	Introduction
	Types of Triggers
	Order of Trigger Execution
	Naming Customized Triggers
	Creating Column Triggers
	CHECK-FIELD
	POST-FIELD
	CHOOSE-FIELD

	Creating Row Triggers
	PRE-INSERT
	POST-INSERT
	PRE-UPDATE
	POST-UPDATE
	PRE-DELETE
	POST-DELETE
	CHOOSE-FIELD (for form)
	SEARCH-FIELD
	SEARCH-ALL-FIELD

	Creating Form Triggers
	PRE-FORM
	POST-FORM


	Error and Warning Messages
	Introduction
	Activating the Command
	Specifying the Message Content
	General Error Messages
	Require Password Reentry
	Message Parameters

	Sending an Email from a Program
	Introduction
	Controlling the Appearance of Line Breaks within a Message
	Updating the History of Statuses Using MAILMSG
	Sending a Link to a Document using MAILMSG

	Changing Column Titles Dynamically
	Including One Trigger in Another
	The INCLUDE Command
	Using Buffers
	Naming Buffers
	Nesting INCLUDE Commands
	Advantages of the Wildcards
	Error and Warning Messages
	Checking Trigger Usage

	Trigger Errors
	Form Preparation
	Introduction
	Loading a Form

	Help Messages
	Forms
	Reports
	Procedures
	Referring to Other Entities

	Reports
	Introduction
	Copying Reports
	Report Attributes
	Report Name
	Report Title
	Application
	Module


	Report Columns
	Report Column Attributes
	When Creating a New Report
	Adding Report Columns
	Column Numbers
	Join Columns
	Special Joins

	Report Output
	User Input
	Predefined Query Conditions
	Accessing a Related Form
	Dynamic Access
	Accessing from a Column That is Not a Unique Key
	Writing a New CHOOSE-FIELD or SEARCH-FIELD Trigger for a Report Column

	Special Report Columns
	Displaying an Address in Google Maps
	Displaying QR Codes
	Updating Custom Printing Programs with QR Codes



	Organizing Report Data
	Introduction
	Distinct Records
	Sorting
	Grouping
	Headers
	Display of Grouped Records
	Financial Reports: Distinguishing Between Credit and Debit Balances
	Group Functions
	Operations on Report Columns
	Additional Sub-totals in Reports

	Refining Report Data Display
	Spacing Between Report Rows
	Width, Decimal Precision and Column Title
	Date Displays
	Non-display of Zero Values
	Displaying HTML Text in Reports
	HTML Design
	Designing Reports Using CSS Classes
	Tips for Advanced Users

	Calculated Report Columns
	Introduction
	Steps for Creating a Calculated Column
	Displaying Alternative Date Formats
	Condition for a Calculated Column
	Conditions in a Group by Column
	Using a Complex Function

	Types of Reports
	Tabular Reports
	Totals

	Multi-Company Reports
	Processed Reports

	Running the Report
	Introduction
	Using a Program to Run the Report
	Creating Menu Links
	Form Action

	Procedures
	Introduction
	Copying Procedures
	Procedure Attributes
	Procedure Name
	Procedure Title
	Procedure Type
	Application
	Module


	Procedure Steps
	Introduction
	Step Types
	Basic Commands

	Procedure Parameters
	Introduction
	Parameter Name and Title
	Parameter Order
	Parameter Content
	Parameter Type

	User Input in Procedures
	Introduction
	Inputting a New Value
	Choosing Between Several Fixed Options
	Choosing Options from a List of Radio Buttons
	Retrieving Records Into a Linked File
	Inputting Text Into an HTML Screen
	Other Input Options
	Writing a New CHOOSE-FIELD or SEARCH-FIELD Trigger for a Procedure Parameter
	Accessing a Related Form
	Input During Action
	Using a Form for Input

	Procedure Step Queries
	Introduction
	Error and Warning Messages
	Parameter Variables
	Procedures With Heavy Processing
	Checking SQL Syntax
	Tracking Changes in Step Queries

	Procedure Flow Control
	Introduction
	Continuing/Halting the Procedure
	Using the GOTO Command
	Activating a User-Chosen Option

	Procedure Messages
	PRINT, PRINTCONT and PRINTERR
	Printing a Fixed Message

	Processed Reports
	Introduction
	Changing the Report Title
	Defining Dynamic Column Titles
	Defining Dynamic Report Conditions

	Running the Procedure
	Using a Program to Run the Procedure
	Activation from a Menu
	Actions from a Form
	Running a Sub-Procedure

	Documents
	Introduction
	Creating the Input for the Document
	Declaring the Cursor
	Going Over the Records
	Executing Reports that will Create the Document

	Displaying the Document
	Defining Print Options
	Setting a Number of Copies to Print

	Special Document Features
	Sending Documents by Automatic Mail
	Document Design: Forcing Display of the Line Number

	Outputting Documents - the WINHTML Program
	WINHTML Parameters
	Document Format
	Determining Available Print Formats
	Setting the Print Format

	WINHTML Examples
	Executing the Document
	Printing with -format
	Printing the Document using the Default Printer
	Creating a Digitally Signed PDF Document using Procedure Code
	Creating an E-Document using Procedure Code
	Saving a Certified Copy when Printing a Document

	Displaying the Document

	The Letter Generator
	Introduction
	Creating a Letter
	The LETTERSTACK Table

	Interfaces
	Form Loads
	Advantages of Form Interfaces
	Form Interface Sources and Targets
	General Defintions for All Interfaces
	Interface Name and Title
	Module
	Load Parameters


	Loading from/to a Load Table
	Introduction
	Mapping the Interface
	Link Form Columns to Table Columns
	Default Values

	Implementation in Code
	Adding Line Items to an Existing Document
	Creating your own Load Table

	Load Data from a File or Export Data to a File
	Introduction

	Import/Export Data with Plain Text Files
	Fixed Position and TSV Files
	Defining the File
	Forms in the Load
	Link Form Columns to Fields in File
	Default Values
	Additional Definitions for Exporting Data


	Import/Export Data with XML/JSON Files
	Parsing a File
	Parsing File Tags/Fields

	XML
	XML Tags Structure
	Mapping Form Data to XML Tags
	JSON Files
	Differences between XML and JSON


	Executing the Form Load
	Introduction
	Form Load Parameters
	Export-only Parameters

	Dealing With Errors and Reloading
	Executing a Form Load from a Form Trigger or Step Query
	Code Examples

	Deleting Records via an Interface
	Dynamic Interfaces
	Special Load Parameters for Dynamic Interfaces
	Dynamic Interface Examples
	Exporting Data
	Importing Data
	Deleting Data


	Table Loads
	Introduction
	Defining the Load File
	Defining the Load
	Automatic Load Query
	Manual Load Query

	Loading the File
	Table Load Parameters
	Viewing Load Messages
	Converting an Excel File to a Tab-delimited Text File for DBLOAD


	Combining Table Loads with Form Loads
	Finding Form Interfaces
	Introduction
	Interfaces for a Specific Form
	Interfaces for a Specific Form Column
	Existing INTERFACE and DBLOAD Programs
	Interfaces in General

	Duplicating Documents with an Interface
	The STACKERR Table
	Debug Tools
	Introduction
	Debugging a Form, Procedure or Interface
	Debugging a Simple Report
	Optimization
	Table Access

	Advanced Debugging
	Logging
	Message Severity Levels
	Usage in Priority Procedures
	Tabula.ini Definitions


	Installing your Customizations
	Steps for Creating Version Revisions
	Explanation of the Modification Codes
	Additional Information for Specific Modification Codes
	TAKEWORDTMPL
	TAKEHELP


	Tips for Working with Revisions
	Tracking Changes to Queries
	Installing the Revision

	Customization - Language Dictionaries
	Introduction
	Preparing Upgrades for Other Languages
	Modifying DBI Operations in the Revision
	Creating a New Table
	Creating a New Table Column
	Changing a Table Title
	Changing a Table Column Title


	Creating and Modifying User Report Generators
	Introduction
	Components of the Report Generator
	Creating Your Own Report Generator
	Constructing the Base Report
	Constructing the Form
	Constructing the Procedure That Runs the Report
	Allowing User Access to the Report Generator

	Adding New Columns to a Standard Report Generator

	Creating and Modifying BI Reports
	Introduction
	Procedures that Prepare the Data
	The BI Report
	The Procedure that Runs the Report

	Priority Lite and Dashboards
	Introduction
	The Structure of HTML Procedures
	Displaying Reports
	Retaining Variable Values After the Procedure Stops

	User Identification for Priority Lite/Dashboards
	Introduction

	Priority Dashboard Reports
	Introduction
	Input Columns and Links in the Report
	Defining Choose Lists
	Maintenance of Input and Links
	Defining Links in the Report

	Handling Input From Report Columns in the Procedure

	Additional Input Options (Priority Lite/Dashboards)
	Procedures That Work Like Forms (Input Screens)
	User Input Validation and Messages
	Input Validation
	Resetting Variables and/or Generating the Reports Again
	Another Way to Display Messages

	Adding Explanatory Text
	Input of Text
	Input of Attachments

	Defining a Base Page for HTML Pages (Priority Lite/Dashboards)
	Defining the Base Page
	Revising the Base Page

	Dashboard Procedures
	Introduction
	Creating a New Multi-Part Dashboard
	Adding a Dashboard Procedure to Outlook
	CRM Dashboards

	Create BPM
	Create BPM Statuses Table
	Create BPM Statuses Form
	Form Triggers

	Modify the New Document
	Assigned to
	The Status Column
	Connecting the New Document to the To Do List

	Enable Document Tracking
	Update the STATUSTYPES Table
	Finding the Values
	Inserting the Data
	Search

	Add BPM Interfaces
	BPM Interface
	Update Status/Assigned User

	Add BPM Chart Procedure
	Debug the BPM
	Insert Initial BPM Status
	Creating Charts
	Introduction
	Defining a New Chart
	Section 1: User Input and Activation of the GANTT Program
	Section 2: Defining Parameters

	Procedure Messages
	Defining the Interface for Updating/Adding Tasks

	Parameters for Charts
	Introduction
	Defining Employees (RESOURCE)
	Retrieving Details of a Specific Employee (RESOURCE_DETAILS)
	Defining Tasks (TASKS)
	Retrieving Task Details (TASK_DETAILS)
	Retrieving Task Text (TASK_TEXT)
	Adding Tasks to the Chart (TASK_INSERT)
	Defining Input Fields for the Dialogue Box (TASK_EDIT)
	Updating the Display (TASK_REFRESH)
	Adding a Custom Date Label (TASK_CUSTOMDATE)
	Office Hours (WORKHOURS)
	Non-working Days (DAYSOFF)
	Employee Work Hours (RESOURCE_WORKHOURS)
	Task Dependencies (RELATIONS)
	Choose List for Employees (RESOURCE_CHOOSE)
	Additional Choose Lists (RESOURCE_CHOOSE2, RESOURCE_CHOOSE3)
	Update After Choosing an Employee (RESOURCE_UPDATE)
	Update After Additional Choose Lists (RESOURCE_UPDATE2, RESOURCE_UPDATE3)
	Preparing the LINK File Before Producing Reports (TASK_PRINT)

	Programming for Priority Web
	Differences from Priority Windows
	Saving Debug Files

	Priority Cloud
	system/sync

	Advanced Programming Tools
	Running a Procedure/Report from an SQLI Step or Form Trigger
	Examples
	Procedures
	Executing a Procedure
	Executing a Procedure - Linked Table
	Executing a Procedure - External Variables

	Reports
	Executing a Report
	Running a Report and Sending it by E-mail
	Output



	Financial Documents - Initial and Follow-up Procedures
	Initial Procedures
	Follow-up Procedures

	Open Form Record from within a Procedure
	Print Attachments from a Procedure
	Click2Sign
	Click2Sign General Requirements
	Form Requirements
	Adding Click2Sign to the Document

	Encrypting Data
	Dynamic SQL
	Executing SQL Queries Dynamically

	Get Data from the Client INI File
	Using Semaphores
	Activating Priority Entities from an External Application
	Open a Record from a Hyperlink
	Open a Record from the Command Prompt (Windows only)

	Interacting with External Programs
	File Management Utilities
	Browsing the Contents of a Folder
	FILELIST on the Public Cloud (AWS)

	Misc. Utilities
	Running an External Application (WINAPP)
	Executing Priority Commands from an External Application (WINRUN)
	Examples


	Filters - Manipulate Text Files
	The FILTER Program
	FILTER parameters
	Special Filters
	Encoding Filters
	File Formatting
	Base64



	Interacting with Webservices via WSCLIENT
	WSCLIENT Parameters
	Authenticating With OAuth2


	Parsing XML and JSON
	Working with XML
	Parsing an XML File
	Inserting Data into an XML Tag

	Parsing JSON
	Access SFTP with SFTPCLNT
	Defintions for SFTP
	Uploading/Downloading a File
	Examples

	Listing the Contents of a Folder
	Example


	Defining Word Templates for Specific Records
	Using Custom Form Columns in the Business Rules Generator
	VSCode Priority Dev Tools Extension
	Introduction
	Features
	Working Assumptions
	Setups
	Add an Environment
	Using the Extension
	Using WINDBI


